Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Система m уравнений с n неизвестными. Рассмотрим решение системы m уравнений с n неизвестными




Рассмотрим решение системы m уравнений с n неизвестными. Допустим она совместна и rg (A|В)=rg A=r.

Пусть r<n. r переменных х1, х2,…,хr называются базисными (зависимыми, основными), если определитель матрицы из коэффициентов при них (т.е. базисный минор) отличен от нуля. Остальные n-r называются свободными (независимыми, неосновными).

Решение системы (1), в котором все n-r свободных переменных равны нулю, называется базисным.

Т.к. каждому разбиению переменных на базисные и свободные соответствует одно базисное решение, а число способов разбиения не превосходит числа сочетаний , то и базисных решений не более . Т.о. совместная система m линейных уравнений с n переменными (m<n) имеет бесконечное множество решений, среди которых базисных решений конечное число, не превосходящее .

Не ограничивая общности, будем считать, что базисный минор матрицы А расположен в верхнем левом углу.

Тогда первые r строк как основной, так и расширенной матрицы являются базисными и, следовательно (по теореме о базисном миноре) каждая из строк расширенной матрицы, начиная с (r+1)-й, является линейной комбинацией первых r строк.

Это означает, что каждое из уравнений системы, начиная с (r+1)-го, является линейной комбинацией (т.е. следствием) первых r уравнений.

Т.о. достаточно найти все решения только первых r уравнений. Запишем первые r уравнений в виде:

(12)

Если задать свободным неизвестным хr+1r+2,…,xn произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., произвольно выбранный набор чисел сr+1r+2,…,сn однозначно определяют совокупность r чисел c1,c2,…,cr, обращающих в тождество все уравнения системы (12) и определяющиеся по формулам Крамера.

Обозначим символом Mj(di) определитель, получающийся из базисного минора М матрицы системы заменой его j-го столбца столбцом из чисел d1,d2,…,di,…,dr (с сохранением без изменения всех остальных столбцов М). Тогда, записывая решение системы (12) с помощью формул Крамера и пользуясь линейным свойством определителя, получим:

cj=Mj(bi-ai,r+1cr+1-…-aincn)=(Mj(bi)-cr+1Mj(ai,r+1)-…-cnMj(ain)) j=1,2,…,r (13)

Формулы (13) выражают значения неизвестных xj=cj (j=1,2,…,r) через коэффициенты при неизвестных, свободные члены и произвольно заданные параметры cr+1,…,cn.

Докажем, что формулы (13) содержат любое решение системы (1). Пусть ,,…,,,…,- произвольное решение системы (1), тогда оно является и решением системы (12). Но из системы (12) величины ,,…,однозначно определяются через величины ,…,по формулам Крамера (13). Т.о. при =,…,=формулы (13) дают рассматриваемое решение ,,…,,,…,.

Если rg (A|В)=rg A=r=n, то соотношения (13) переходят в формулы:

cj=j=1,2,…,r определяющие единственное решение системы (1). Т.о. система (1) является определенной, если rg (A|В)=rg A=r=n£m.

Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Пусть в системе (1) а110 (этого всегда можно добиться при помощи элементарных преобразований). В 1-м уравнении оставляем переменную х1, во всех остальных уравнениях исключаем ее, умножая 1-е уравнение на подходящие числа () и прибавляя к соответственно 2-му, 3-му,…,m-му уравнению системы.

Далее, предполагая а220, аналогичным образом исключаем переменную х2 из всех уравнений, начиная с 3-го. И т.д.

В результате последовательного исключения переменных получаем систему следующего вида:

(14), где r≤m.

Число нуль в последних m-r уравнениях означает, что их левые части имеют вид . Если хотя бы одно из чисел не равно нулю, то соответствующее равенство противоречиво, и система (14) несовместна.

Т.о. для любой совместной системы числа в системе (14) не равны нулю. Тогда последние m-r строчки являются тождествами и их можно отбросить при решении системы.

Если r<m (число уравнений меньше числа неизвестных), то система (14) неопределенна и имеет ступенчатый вид.

Если r=m, то система (14) определена и имеет треугольный вид.

Переход системы (1) к равносильной ей системе (14) называется прямым ходом метода Гаусса, а нахождение переменных из системы (14) – обратным ходом.

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей системы А*.

Если система определена, то прямой и обратный ход метода Гаусса можно проводить одновременно: (А|В)~(Е|Х). Вместо столбца свободных членов получаем столбец неизвестных.

Пример.




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 702; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.