Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Идеальная жидкость. Законы Пуазейля и Стокса




Идеа́льная жи́дкость — в гидродинамике — воображаемая несжимаемая жидкость, в которой отсутствуют вязкость и теплопроводность. Так как в ней отсутствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

Моделью идеальной жидкости пользуются при теоретическом рассмотрении задач, в которых вязкость не является определяющим фактором и ею можно пренебречь. В частности, такая идеализация допустима во многих случаях течения, рассматриваемыхгидроаэромеханикой, и даёт хорошее описание реальных течений жидкостей и газов на достаточном удалении от омываемых твёрдых поверхностей и поверхностей раздела с неподвижной средой. Математическое описание течений идеальных жидкостей позволяет найти теоретическое решение ряда задач о движении жидкостей и газов в каналах различной формы, при истечении струй и при обтекании тел.

Закон Пуазейля представляет собой формулу для объемной скорости течения жидкости. Он был открыт экспериментально французским физиологом Пуазейлем, который исследовал течение крови в кровеносных сосудах. Закон Пуазейля часто называют главным законом гидродинамики.

Закон Пуазейля связывает объемную скорость течения жидкости с разностью давления в начале и конце трубки как движущей силой потока, вязкостью жидкости, радиусом и длиной трубки. Закон Пуазейля используют в случае, если течение жидкости ламинарное. Формула закона Пуазейля:

 

где Q - объемная скорость жидкости (м3/с), (P1- P2) - различие давления через концы трубки (Па), r - внутренний радиус трубки (м), l - длина трубки (м), η - вязкость жидкости (Па с).

Закон Пуазейля показывает, что величина Q пропорциональна разнице давления P1- P2 в начале и конце трубки. Если P1 равняется P2, поток жидкости прекращается. Формула закона Пуазейля также показывает, что высокая вязкость жидкости приводит к снижению объемной скорости течения жидкости. Оно также показывает, что объемная скорость жидкости чрезвычайно зависима от радиуса трубки. Это подразумевает, что умеренные изменения радиуса кровеносных сосудов могут обеспечивать большие различия объемной скорости жидкости, протекающей через сосуд.

Формула закона Пуазейля упрощается и становится более универсальной при введении вспомогательной величины - гидродинамического сопротивления R, которое для цилиндрической трубки может быть определено по формуле:

 

Закон Пуазейля, таким образом, показывает, что объемная скорость жидкости прямо пропорциональна разнице давления в начале и конце трубки и обратно пропорциональна гидродинамическому сопротивлению:

 

Течение Пуазейля - ламинарное течение жидкости через тонкие цилиндрические трубки. Описывается законом Пуазейля.

Окончательно потери напора при ламинарном движении жидкости в трубе:

Несколько преобразовав формулу для определения потерь напора, получим формулу Пуазейля:

Закон установившегося течения в вязкой несжимаемой жидкости в тонкой цилиндрической трубке круглого сечения. Сформулирован впервые Готтфильхом Хагеном в 1839 и вскоре повторно выведен Ж.Л. Пуазейлем в 1840. Согласно закону, секундный объемный расход жидкости пропорционален перепаду давления на единицу длины трубки. Закон Пуазейля применим только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка необходимую для развития ламинарного течения в трубке.

Свойства течения Пуазейля:

-Течение Пуазейля характеризуется параболическим распределением скорости по радиусу трубки.

-В каждом поперечном сечении трубки средняя скорость вдвое меньше максимальной скорости в этом сечении.

Из формулы Пуазейля видно, что потери напора при ламинарном движении пропорциональны первой степени скорости или расхода жидкости.

Формулой Пуазейля пользуются при расчетах показателей транспортировки жидкостей и газов в трубопроводах различного назначения. Ламинарный режим работы нефте- и газопроводов является наиболее выгодным в энергетическом отношении. Так, в частности, коэффициент трения при ламинарном режиме практически не зависит от шероховатости внутренней поверхности трубы (гладкие трубы).

Гидравлическое сопротивление

в трубопроводах (a. hydraulic resistance; н. hydraulischer Widerstand; ф. resistance hydraulique; и. perdida de presion por rozamiento) - сопротивление движению жидкостей (и газов), оказываемое трубопроводом. Г. с. на участке трубопровода оценивается величиной "потерянного" давления ∆p, представляющего собой ту часть удельной энергии потока, к-рая необратимо расходуется на работу сил сопротивления. При установившемся течении жидкости (газа) в трубопроводе круглого сечения ∆p (н/м2) определяется по формуле

где λ - коэфф. гидравлич. сопротивления трубопровода; u - ср. по сечению скорость потока, м/с; D - внутр. диаметр трубопровода, м; L - длина трубопровода, м; ρ - плотностьжидкости, кг/м3.
Местные Г. с. оцениваются по формуле

где ξ - коэфф. местного сопротивления.
В процессе эксплуатации магистральных трубопроводов Г. с. возрастает вследствиеотложения парафина (нефтепроводы), скоплений воды, конденсата или образования гидратов углеводородных газов (газопроводы). Для снижения Г. с. производят периодич. очистку внутр. полости трубопроводов спец. скребками или разделителями

В 1851 Джордж Стокс получил выражение для силы трения (также называемой силойлобового сопротивления), действующей на сферические объекты с очень маленькимичислами Рейнольдса (например, очень маленькие частицы) в непрерывной вязкойжидкости, решая уравнение Навье — Стокса:

где

· — сила трения, так же называемая силой Стокса,

· — радиус сферического объекта,

· — динамическая вязкость жидкости,

· — скорость частицы.

Если частицы падают в вязкой жидкости под действием собственного веса, то установившаяся скорость достигается, когда эта сила трения совместно с силой Архимеда точно уравновешиваются силой гравитации. Результирующая скорость равна

где

· Vs — установившаяся скорость частицы (м/с) (частица движется вниз если , и вверх в случае ),

· — радиус Стокса частицы (м),

· g — ускорение свободного падения (м/с²),

· ρp — плотность частиц (кг/м³),

· ρf — плотность жидкости (кг/м³),

· — динамическая вязкость жидкости (Па с).




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 9115; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.