Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Характеристика элементов главной подгруппы II группы




Главную подгруппу II группы Периодической системы элементов составляют бериллий Be, магний Mg, кальций Ca, стронций Sr, барий Ba и радий Ra.

Таблица 18 – Характеристика элементов 2Ап/группы

Атомный номер Название Атомная масса Электронная конфигурация    г/см3 tпл. C tкип. C ЭО Атомный радиус, нм Степень окисления
Бериллий Be 9,01 [He] 2s2 1,86 1,5 0,113 +2
Магний Mg 24,3 [Ne]3s2 1,74 649,5 1,2 0,16 +2
Кальций Ca 40,08 [Ar] 4s2 1,54 1,0 0,2 +2
Стронций Sr 87,62 [Kr] 5s2 2,67 1,0 0,213 +2
Барий Ba 137,34 [Xe] 6s2 3,61 0,9 0,25 +2
Радий Ra [Rn] 7s2 6 700 0,9 +2

 

Атомы этих элементов имеют на внешнем электронном уровне два s-электрона: ns2. В хим. реакциях атомы элементов подгруппы легко отдают оба электрона внешнего энергетического уровня и образуют соединения, в которых степень окисления элемента равна +2.

Все элементы этой подгруппы относятся к металлам. Кальций, стронций, барий и радий называются щелочноземельными металлами.

В свободном состоянии эти металлы в природе не встречаются. К числу наиболее распространенных элементов относятся кальций и магний. Основными кальцийсодержащими минералами являются кальцит CaCO3 (его разновидности – известняк, мел, мрамор), ангидрит CaSO4, гипс CaSO4 ∙ 2H2O , флюорит CaF2 и фторапатит Ca5(PO4)3F. Магний входит в состав минералов магнезита MgCO3, доломита MgCO3 ∙ CaCo3, карналлита KCl ∙ MgCl2 ∙ 6H2O. Соединения магния в больших количествах содержатся в морской воде.

Свойства. Бериллий, магний, кальций, барий и радий – металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий.

Радий является радиоактивным химическим элементом.

Бериллий, магний и особенно щелочноземельные элементы – химически активные металлы. Они являются сильными восстановителями. Из металлов этой подгруппы несколько менее активен бериллий, что обусловлено образованием на поверхности этого металла защитной оксидной пленки.

1. Взаимодействие с простыми веществами. Все легко взаимодействуют с кислородом и серой, образуя оксиды и сульфаты:

2Be + O2 = 2BeO

Ca + S = CaS

 

Бериллий и магний реагируют с кислородом и серой при нагревании, остальные металлы – при обычных условиях.



Все металлы этой группы легко реагируют с галогенами:

Mg + Cl2 = MgCl2

 

При нагревании все реагируют с водородом, азотом, углеродом, кремнием и другими неметаллами:

Ca + H2 = CaH2 (гидрид кальция)

3Mg + N2 = Mg3N2 (нитрид магния)

Ca + 2C = CaC2 (карбид кальция)

 

Карибит кальция – бесцветное кристаллическое вещество. Технический карбит, содержащий различные примеси, может иметь цвет серый, коричневый и даже черный. Карбит кальция разлагается водой с образованием газа ацетилена C2H2 – важного продукта хим. промышленности:

CaC2 + 2H2O = Ca(OH)2 + C2H2

 

Расплавленные металлы могут соединяться с другими металлами, образуя интерметаллические соединения, например CaSn3, Ca2Sn.

2. Взаимодействуют с водой. Бериллий с водой не взаимодействует, т.к. реакции препятствует защитная пленка оксида на поверхности металла. Магний реагирует с водой при нагревании:

Mg + 2H2O = Mg(OH)2 + H2

 

Остальные металлы активно взаимодействуют с водой при обычных условиях:

Ca + 2H2O = Ca(OH)2 + H2

 

3. Взаимодействие с кислотами. Все взаимодействуют с хлороводородной и разбавленной серной кислотами с выделением водорода:

Be + 2HCl = BeCl2 + H2

 

Разбавленную азотную кислоту металлы восстанавливают главным образом до аммиака или нитрата аммония:

2Ca + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O

 

В концентрированных азотной и серной кислотах (без нагревания) бериллий пассивирует, остальные металлы реагируют с этими кислотами.

 

4. Взаимодействие с щелочами. Бериллий взаимодействует с водными растворами щелочей с образованием комплексной соли и выделением водорода:

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2

 

Магний и щелочноземельные металлы с щелочами не реагируют.

5. Взаимодействие с оксидами и солями металлов. Магний и щелочноземельные металлы могут восстанавливать многие металлы из их оксидов и солей:

TiCl4 + 2Mg = Ti + 2MgCl2

V2O5 + 5Ca = 2V + 5CaO

Бериллий, магний и щелочноземельные металлы получают электролизом расплавов их хлоридов или термическим восстановлением их соединений:

BeF2 + Mg = Be + MgF2

MgO + C = Mg + CO

3CaO + 2Al = 2Ca + Al2O3

3BaO + 2Al = 3Ba + Al2O3

Радий получают в виде сплава с ртутью электролизом водного раствора RaCl2 с ртутным катодом.

Получение:

1) Окисление металлов (кроме Ba, который образует пероксид)

2) Термическое разложение нитратов или карбонатов

CaCO3= CaO + CO2­

2Mg(NO3)2= 2MgO + 4NO2­ + O2­

Определение жесткости воды имеет большое практическое значение и широко применяется в технике, промышленности и сельском хозяйстве.

Вода приобретает жесткость при взаимодействии с солями кальция и магния, содержащимися в земной коре. Растворение карбонатов кальция и магния происходит при взаимодействии углекислого газа почвы с указанными солями.

СаСО3 + СО2 + Н2О = Са(НСО3)2

МgCO3 + CO2 + H2O = Mg(HCO3)2

Образовавшиеся бикарбонаты растворяются в грунтовых водах. Гипс СаSO4

немного непосредственно растворим в воде.

Различают временную, постоянную и общую жесткость.

Временная, или карбонатная, жесткость обусловлена присутствием в воде растворимых гидрокарбонатов кальция и магния. Эта жесткость легко устраняется при кипячении: t0

Са(НСО3)2 = СаСО3 + Н2О + СО2­

t0

Mg(HCO3)2 = МgCO3 + CO2­ + H2O

 

Постоянная жесткость воды обусловлена присутствием в ней солей кальция и магния, не дающих осадка при кипячении (сульфаты и хлориды). Сумма временной и постоянной жесткости составляет общую жесткость воды. Она определяется суммарным числом миллимолей эквивалентов ионов Са2+ и Мg2+ в 1 л воды (ммоль/л) или тысячных долей молярных масс эквивалентов Са2+ и Мg2+ в 1 литре воды (мг/л).

Примечание: при расчетах, связанных с жесткостью воды надо учитывать, что Э(Са2+) = 1/2Са2+ и Э(Мg2+) = 1/2 Мg2+ , а Мэ(Са2+) = 1/2Миона Са2+ = 20г/моль и Мэ(Мg2+ ) = ½ Миона Мg2+ = 12 г/моль. Тогда: 0,02г – это масса 0,001 моль или 1ммоль эквивалентов Са2+.

По значению общей жесткости воду классифицируют следующим образом:

1. мягкая (< 4 ммоль/л),

1. среднежесткая (4-8 ммоль/л),

2. жесткая (8-12 ммоль/л),

3. очень жесткая (>12 ммоль/л).

Жесткая вода не пригодна для проведения технологических процессов в ряде отраслей и промышленности. При работе парового котла на жесткой воде, его нагреваемая поверхность покрывается накипью, т.к. накипь плохо проводит тепло, прежде всего становиться неэкономной сама работа котла. Уже слой накипи толщенной 1 мм повышает расход топлива приблизительно на 5%. Кроме того, изолированные от воды стенки котла могут нагреться до очень высоких температур. При этом стенки окисляются и теряют былую прочность, что может привести к взрыву котла. Пользование жесткой водой увеличивает расход моющих средств, затрудняет стирку белья, мытье волос и другие операции, связанные с потреблением мыла. Обусловлено это нерастворимостью солей двухвалентных металлов и входящих в состав мыла органических кислот, из за чего с одной стороны загрязняются омываемые предметы, а с другой - непроизводительно расходуется мыло.

Снизить жесткость воды можно различными способами:

1) кипячение (только для временной жесткости);

2) химический способ (с использованием Са(ОН)2, Na2CO3, (NaPO3)6 или Na6P6O18, Na3PO4 и др.)

3) метод ионного обмена с использованием адюмосиликатов:

Na2H4Al2Si2O10 + Ca(HCO3)2 = CaH4Al2Si2O10 + 2NaHCO3

Na2H4Al2Si2O10 + CaSO4 = CaH4Al2Si2O10 + Na2SO4

и с помощью ионно-обменных смол, представляющих собой высокомолекулярные органические вещества, содержащие кислотные или основные функциональные группы.

. Для умягчения воды используют также катиониты. Например, при пропускании жесткой воды через катионит типа RNa протекают следующие процессы ионного обмена:

2RNa + Ca2+=R2Ca + 2Na+

2RNa + Mg2+=R2Mg + 2Na+

Лучшим способом умягчения воды является ее перегонка.

Жесткость воды определяют с использованием титриметрических методов количественного анализа, являющегося разделом аналитической химии

Задания для контроля усвоения темы

1. На осаждение гидрокарбонатов кальция и магния из 2л воды израсходовано 2,12г карбоната натрия. Определите жесткость воды.

2. Карбонатная жесткость воды равна 40 мг/л эквивалентов. При кипячении 120л этой воды выделилось 216,8г осадка смеси карбоната кальция и гидроксокарбоната магния. Определите массу каждого компонента смеси.

3. Жесткая вода содержит 50мг/л гидрокарбоната кальция и 15мг/л сульфата кальция. Сколько (по массе) карбоната натрия потребуется для умягчения 1м3 такой воды?

4. Какую массу фосфата натрия надо прибавить к 500мл воды. Чтобы устранить ее карбонатную жесткость, равную 5 ммоль эквивалентов?

5. Рассчитайте чему равна жесткость воды в 100л которой содержится 14,632г гидрокарбоната магния?

6. При определении жесткости воды комплексометрическим методом, на титрование 100мл воды потребовалось 5мл 0,1н. раствора трилона Б. Рассчитайте жесткость воды.

7. К 100л жесткой воды прибавили 12, 95г гидроксида кальция. На сколько понизилась карбонатная жесткость воды?

8. К жесткой воде, содержащей 1г сульфата кальция в литре, добавили избыток соды. Какова жесткость исходной воды в мг/л эквивалентов. Сколько граммов осадка выпадет после полного устранения жесткости из 1м3 такой воды?

9. Сточная вода химического завода содержит в одном литре 5г кальциевой селитры м 2г поваренной соли. Какова жесткость этой воды в ммоль/л. Какое вещество и в каком количестве следует добавить к 10л такой воды для полного устранения жесткости?

10. Минеральная вода «Нарзан» содержит в одном литре 0,3394г кальция и 0,0884г магния в виде ионов. Какова общая жесткость нарзана в ммоль/л? Какое вещество и в каком количестве следовало бы добавить к одному кубометру «нарзана» для полного удаления жесткости?

11. Какова жесткость воды (в ммоль/л) , если для ее устранения к 100л воды потребовалось добавить 15,9 г безводной соды?

12. Вычислите жесткость воды, зная, что в 600л ее содержится 65,7г гидрокарбоната магния и 61,2 сульфата калия.

13. Растворимость гипса в воде равна 8 · 10-3 моль/л. Какова жесткость такого (насыщенного) раствора в мг/л? Какое вещество и в каком количестве следует прибавить к одному кубометру такой воды для полного устранения ее жесткости?

14. При кипячении 250мл воды, содержащей гидрокарбонат кальция, выпал осадок массой 3,5мг. Чему равна жесткость воды?

15. Определите карбонатную жесткость, если на титрование 200мл воды израсходовано 8мл 0,05н. раствора НСl.





Дата добавления: 2014-10-23; Просмотров: 1974; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 23.20.91.30
Генерация страницы за: 0.091 сек.