Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нормальный вектор плоскости, координаты нормального вектора плоскости




Способы задания плоскости.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями. Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными.

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек.

Также интересны случаи, когда несколько плоскостей пересекаются по одной прямой и несколько плоскостей пересекаются в одной точке.

Перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки.

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

· через прямую и не лежащую на ней точку проходит плоскость, притом только одна;

· через две пересекающиеся прямые проходит единственная плоскость.

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых. Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые.

Признак параллельности двух плоскостей дает нам еще один способ задания плоскости. Вспомним формулировку этого признака: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны. Следовательно, мы можем задать конкретную плоскость, если укажем точку, через которую она проходит и плоскость, которой она параллельна.



В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать общее уравнение плоскости.

Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

Сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.

 

2.1. Нормальный вектор плоскости – определение, примеры, иллюстрации.

Определение. Нормальный вектор плоскости - это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если - нормальный вектор плоскости , то вектор при некотором ненулевом действительном значении t также является нормальным вектором плоскости .

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Пример нормального вектора плоскости.Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz. Координатные векторы являются нормальными векторами плоскостей Oyz, Oxz и Oxy соответственно. Это действительно так, потому что векторы ненулевые и лежат на координатных прямых Ox, Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz, Oxz и Oxy соответственно.

2.2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.

Найдем координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz.

Общее уравнение плоскости вида определяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор . Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Пример.Найдите координаты какого-либо нормального вектора плоскости .

Решение.Нам дано общее уравнение плоскости, коэффициенты перед переменными x, y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, - один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как , где t - произвольное действительное число, отличное от нуля.

Ответ:

Пример.Плоскость задана уравнением . Определите координаты ее направляющих векторов.

Решение.Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение в виде . Таким образом, нормальный вектор этой плоскости имеет координаты , а множество всех нормальных векторов запишется как .

Ответ:

Уравнение плоскости в отрезках вида , как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты .

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.





Дата добавления: 2014-10-31; Просмотров: 1526; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.80.89.146
Генерация страницы за: 0.093 сек.