Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средства измерения давления




Измерение давления

Наряду с температурой и расходом давление является одной из важнейших физических величин, измеряемой в различных об­ластях человеческой деятельности. Методы и средства измерения давления основаны на использовании различных физических яв­лений, как давно известных, так и открытых сравнительно не­давно.

В настоящее время используются разнообразные методы и сред­ства измерения давления. Средства измерения давления (маномет­ры, вакуумметры, барометры) по физическим эффектам, положен­ным в основу принципа действия первичного измерительного пре­образователя (датчика), делятся на несколько групп. Наибольшее распространение получили жидкостные (в которых измеряемое дав­ление уравновешивается давлением столба жидкости); деформаци­онные (в которых значение деформации упругого чувствительного элемента пропорционально измеряемому давлению); тензометрические (основанные на тензометрическом эффекте материалов) средства измерения. Нас будут интересовать только элек­трические методы и средства измерения давления. В свою очередь электрические манометры делятся на аналого-вые и цифровые. Пер­вые – простые, достаточно надежные, дешевые приборы и пото­му широко распространены в задачах стационарных измерений на промышленных объектах. Цифровые манометры дают возможность организации автоматизированных измерений, позволяют решать как задачи длительной регистрации, так и задачи управления тех­нологическими процессами.

Переход к электрическим выходным сигналам первичных пре­образователей может быть организован по-разному. Для преобра­зования перемещения упругого элемента в электрический сигнал используются различные вторичные измерительные преобразовате­ли: индуктивные/индукционные (меняется индуктивность катушки или взаимная индуктивность двух катушек), трансформаторные (ме­няется выходное напряжение трансформатора), резистивные (меня­ется сопротивление, например, тензодатчика), емкостные (меняется емкость датчика) и др. Рассмотрим некоторые из возможных вари­антов преобразования давления в электрический сигнал.

Трансформаторные преобразователи. Один из вариантов пере­хода к электрическому выходному сигналу представлен на рис. 91.

В основе конструкции механической части – мембранная ко­робка /, герметично разделенная на две части упругой мембраной 2. Под воздействием разности входных давлений р] и ръ поступаю­щих в обе части коробки 1, мембрана 2 прогибается, перемещая при этом сердечник 3 дифференциального трансформаторного преобразователя 4. перемещение сердечника изменяет исходное равновесие мостовой схемы, образованной двумя одинаковыми половинами L вторичной обмотки трансформатора и двумя равными резисторами R. При этом выходной сигнал моста U вых изменяется пропорционально перемещению сердечника и, следовательно давлению или разности давлений р 1 и р 2. Это выходное напряжение U вых можно просто измерить вольтметром переменного напряжения.

 

Рис. 91. Манометр с электрическим выходным сигналом: 1 – мембранная коробка;

2 – мембрана; 3 – сердечник; 4 – дифференциальный трансформаторный преобразователь

Тензометрические преобразователи. Сегодня все большее распространение находят манометры с тензометрическими чувствительными элементами, которые закреплены на деформируемых под воздействием измеряемого давления поверхностях.

Тензометрический эффект проявляется в изменении электрического сопротивления проводников (или полупроводников) при изменении геометрии (например, при изгибе) проводника. Тензорезистроы часто выполняются из тонкой металлической фольги и представляют собой достаточно длинный проводник, компактно уложенный в плоскости поверхности упругой пластины или мембраны (рис.92).

 

 

Рис. 92. Тензометрический эффект: 1 – упругая пластина; 2 – 1-й тензорезистор (R 0+D R);

3 – 2-й тензорезистор(R 0 – D R)

 

Обычно (для повышения чувствительности измерения) устанавливают два тензорезистора – на противоположные поверхности пластины. Эти датчики жестко крепятся (приклеиваются) к пластине и изгибаются вместе с ней.

Если исследуемое давление р изгибает упругую пластину вниз, то длина верхнего тензорезистора увеличивается, его сечение уменьшается и сопротивление его растет: R 0 + D R. У расположенного на нижней поверхности пластины датчика – все наоборот, в результате действия давления р его сопротивление уменьшается: R 0 – D R. Это изменение сопротивления легко могут быть представлены электрическим сигналом тока или напряжения. Обычно тензорезисторы включаются в мостовые схемы (неуравновешенные мосты) – рис. 92.

Выходное напряжение неуравновешенного моста U вых зависит от изменения сопротивлений плеч моста. Достаточно иметь хотя бы один тензорезистор, но для обеспечения линейности преобразования целесообразно включать в соседние плечи моста два одинаковых (рис.101, а), но с различными знаками изменения сопротивления при изгибе пластин (сопротивление резистора R 1+ увеличивается, а R 2 – уменьшается). Для повышения чувствительногсти часто используют четыре тензорезистора (рис.92, б). Включают их таким образом, чтобы в соседних плечах моста стояли датчики с противоположными изменениями значений сопротивлений. Если в мостовой схеме все датчики одинаковы, имеют равные наминальные значения сопротивлений R и равные модули изменения D R при воздействии давления, то выходное напряжение моста U вых можновыразить следующим образом:

U вых = U п (D R/ R),

где U п – напряжение питания моста.

Далее это напряжение может быть измерено аналоговыми из­мерителями или преобразовано в цифровой код, который, в свою очередь, может быть выведен на цифровой индикатор, сохранен или передан другим устройствам. Структура собственно цифрового манометра практически не отличается от структуры других цифро­вых приборов.

Тензометрический принцип успешно используется и для по­строения дифференциальных манометров. При этом также может быть использована традиционная механическая конструкция: мем­бранная коробка из двух герметично изолированных частей (ка­мер), прогибающаяся мембрана между ними, на которой жестко закреплены (например, приклеены) тензорезисторы.

Современные микроэлектронные технологии обеспечивают широкие возможности создания миниатюрных чувствительных элементов (датчиков) манометров. Упрощенное устройство мик­роэлектронного резистивного тензометрического датчика показа­но на рис. 93.

На тонкой пластине кремния сформированы тензорезисторы (по тонко- или толстопленочной технологии) R1, R2, R3, R4 и соединительные проводники. Пластина закреплена на упругой мем­бране и деформируется (прогибается) вместе с ней.

 

Рис. 93. Устройство микроэлектронного резистивного датчика: 1 – кремниевая пластина; 2 – мембрана

Сопротивление резисторов R2 и R4 при деформации значи­тельно увеличивается (до 20...50 %), а сопротивление резисторов R1, R3 практически не меняется. Все резисторы образуют мосто­вую схему, выходное напряжение которой определяется деформа­цией и, следовательно, значением измеряемого давления р.

На рис. 103 схематично показаны варианты конструктивного исполнения мембранной коробки датчиков для измерения абсо­лютного, относительного и дифференциального давлений.

На рис. 94, а приведен вариант мембранной коробки для из­мерения абсолютного давления (например, атмосферного p атм). Вариант на рис. 94, б предназначен для измерения относитель­ного (дифференциального) давления как разности между атмосферным и измеряемым. Измерение дифференциального р дифкак раз­ности между двумя измеряемыми давлениями р 1 и р 2иллюстриру­ется на рис. 94, в.

а б в

Рис. 94. Варианты конструкции мембранной коробки датчиков

Существует понятие трансмиттера (Transmitter),что означает такой полный преобразователь, который содержит и датчик, и цепи нормирования (кондиционирования) сигнала, т.е. выполня­ет и первичное, и вторичное преобразование входной величины – давления. На выходе трансмиттера – унифицированный сигнал: 0... 100 мВ, или 0... 10 В, или 4...20 мА, или иные, принятые стан­дартными, уровни. Погрешности преобразования (типичные) – 0,5...2,5 %.

Емкостные преобразователи. Помимо резистивных применяют­ся и емкостные датчики давления. В емкостных датчиках мембрана выступает в роли одной из пластин конденсатора (рис. 95). Изме­нение ее положения приводит к изменению емкости датчика изатем, например, к изменению выходного напряжения моста пе­ременного тока.

Благодаря достижениям микроэлектронной технологии га­баритные размеры таких датчиков могут быть чрезвычайно ма­лыми (единицы – десятки квадратных миллиметров). Кроме того, на кремниевой пластине могут размешаться и некоторые элемен­ты вторичного преобразования, например, мостовые схемы, уси­лители.

 

 

Рис. 95. Емкостный тензометрический датчик

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 2017; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.