Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные определения и обозначения




Задачи для самостоятельного решения

а) Написать уравнение прямой, проходящей через точку А (2, 0, -3) параллельно:

1) вектору =(2, -3, 5);

2) прямой (х - 1)/5 = (у + 2)/2 = (z + 1)/(-1);

3) прямой

 

б) Задана плоскость x + y - z + 1 = 0 и прямая (x - 1)/0 = y /2 = (z + 1)/1.

Требуется:

1) вычислить угол между ними;

2) написать уравнение плоскости, проходящей через данную прямую перпендикулярно к данной плоскости.

в) Доказать, что прямые

параллельны, и найти расстояние между ними.

 

г) Найти проекцию точки С (3, -4, -2) на плоскость, проходящую через параллельные прямые

10. ВВЕДЕНИЕ В АНАЛИЗ

 

Определение конечного предела функции в точке: число А называется пределом функции при если для любого найдется такое, что при 0 <

Обозначение: или при

Функция называется бесконечно малой (бесконечно большой) при если

Две бесконечно малые (бесконечно большие) функции и при называются эквивалентными, если

Обозначение:

Предел отношения бесконечно малых (бесконечно больших) функций не изменится, если каждую из них заменить эквивалентной функцией, т.е.

(10.1)

если

Отметим, что (С - константа)

Наиболее простым способом вычисления пределов является непосредственная подстановка вместо х числа а. При этом может получится какое-либо число, которое и является пределом. Например

.

Второй также несложный случай возникает, если при такой непосредственной подстановке одна из составляющих имеет предел равный ¥ и получаются следующие варианты (и их решение): С /¥ = 0, С /0 = ¥, ¥/0 = ¥, , . Например

.

В остальных случаях возникают так называемые неопределенности. По поведению функций пределы делятся на неопределенности вида: , Элементарными приемами раскрытия неопределенностей являются:

а) сокращение на множитель, создающий неопределенность;

б) деление числителя и знаменателя на старшую степень аргумента (для отношения многочленов при );

в) применение эквивалентных бесконечно малых и бесконечно больших;

г) использование двух замечательных пределов:

(10.2)

 

10.2. Неопределенности вида 0/0

а) Рациональные выражения. В случае неопределенности 0/0 для рациональных выражений всегда применяется прием сокращения множителя, обращающегося в ноль. Для этого предварительно выделяется линейный множитель, который обращается в ноль. Для выделения линейного множителя находят корни квадратного трехчлена и разлагают его на множители.

Пример. Найти предел

Находим корни числителя х2 - х - 6: х 1 = 3, х 2 = -2.Разлагаем его на множители х2 - х - 6 = (х – 3)(х + 2). То же самое проделываем и для знаменателя: х 1 = 3, х 2 = -7/2, 2х2 + х - 21 = 2(х – 3)(х + 7/2) =

= (х – 3)(2 х + 7). Подставим эти разложения в предел и сокращаем множители, обращающиеся в ноль:

 

б) Иррациональные выражения. Пределы вычисляются также сокращением множителя, обращающегося в предельной точке в ноль. Правда предварительно для этого иррациональное выражение домножают и делят на сопряженное выражение, т.е., если выражение имеет вид (a ± b), то его домножают и делят на (a b).

 

Пример. Найти предел

Домножим числитель и знаменатель на выражение , одновременно разлагая знаменатель на множители:

 

в) Выражения, содержащие тригонометрические и обратные тригонометрические функции. Вычисление пределов в этом случае, как правило, проводится по следующим трем методикам:

1) использование первого замечательного предела

или эквивалентности:

sin a(x) ~ a(x) при a(x) ® 0 (x ® x 0);

 

2) использование формул тригонометрии;

3) применение замены для сведения к первому замечательному преде-лу.

Примеры.

 

а) Найти предел

Воспользуемся приведенными эквивалентностями:

 

sin 5 x ~ 5 x, sin 2 x ~ 2 x при x ® 0.

Тогда

б) Найти предел

 

По формулам тригонометрии (1 - cos x = 2 sin2 (x/ 2)) с учетом эквивалентности имеем

 

в) Найти предел

 

Для сведения к первому замечательному пределу сделаем две замены:

у = 1 , z = arcsin y:

 

г) Найти предел

 

Сделаем замену переменной: у = х + 2. Тогда (с учетом периодичности тангенса и эквивалентности)

 

г) Выражения, содержащие логарифмические и показательные функции. Основными приемами вычисления пределов в этом случае являются:

1) использование эквивалентностей

ln(1 + a(x)) ~ a(x), a a (x) - 1 ~ a(x)ln a при a(х) ® 0;

2) замена переменной для сведения к приведенным эквивалентностям.

 

Примеры.

 

а) Найти предел

 

 

 

б) Найти предел

=

 

 

10.3. Неопределенности вида ¥/¥

 

Основными примерами этой неопределенности являются рациональные функции, когда аргумент стремится к бесконечности. Решаются они вынесением в числителе и знаменателе наивысшей степени х и ее сокращением. При вычислении окончательного результата постоянно используется равенство С /¥ = 0 (C -константа).

 

Пример. Найти предел

 

Выносим наивысшую степень х в числителе и знаменателе:

 

 

 

10.4. Неопределенности вида ¥ - ¥, 0×¥, 00, ¥0, 1¥

Первые четыре неопределенности с помощью арифметических преобразований сводятся к рассмотренным ранее случаям. Особый интерес представляет последняя неопределенность. Для вычисления пределов с неопределенностью 1¥ очень удобна следующая формула:

 

 

Примеры.

 

а) Найти предел

 

б) Найти предел

 

При вычислении подобных примеров наибольшую опасность представляет путаница, возникающая в связи с тем, что к определенным выражениям (типа (2/3)¥ = 0) применяют формулу, как для неопределенности вида 1¥. Например

 

или

 




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 405; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.