Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Електропровідність газоподібних діелектриків




Наведемо еквівалентну схему заміщення даного діелектрика

Rv RS1 Rs2 Rs3 Rs4

 
 


Спочатку визначимо об'ємний і поверхневий опори діелектрика

Опір ізоляції

;

Струм, що протікає через діелектрик

.


Електропровідність у газах виникає тільки при наявності в них іонів чи вільних електронів. Іонізація нейтральних молекул газу відбувається під дією зовнішніх факторів, або внаслідок зіткнення іонізованих часток самого газу, прискорених електричним полем, з молекулами газу. Зовнішніми факторами є ультрафіолетові промені, рентгенівське випромінювання, космічні промені, радіоактивне випромінювання, а також термічне нагрівання газу. Іонізація відбувається внаслідок поглинання нейтральними молекулами фотонів. Енергія фотона визначається за формулою W = h , де h – постійна Планка, = - частота випромінювання, 1/с; С – швидкість світла; - довжина хвилі.

Іонізація молекул відбувається при перевищенні енергією кванта випромі-нювання величини потенціалу іонізації, Uи:

h >eU в = Uи, (2.4)

де U в – потенціал виходу (робота, яку необхідно затратити для видалення за межі атома частки, носія заряду), е – заряд електрона (1,6 10-19Кл)

З підвищенням частоти здатність молекул газу до іонізації збільшується.

Енергія, яку необхідно затратити на іонізацію молекул газу, вимірюється в електроновольтах (еВ). Енергія в 1 еВ дорівнює кінетичній енергії, що здобуває електрон при вільному русі між двома точками з різницею потенціалів у 1В. Отже, 1еВ дорівнює енергії e U= 1,6 10-19, Вт с (Дж).

Потенціал іонізації більшості газів знаходиться в межах 10-20 еВ.

Вільні електрони, знаходячись у русі, зіштовхуються з молекулами газу, при цьому частина з них рекомбінує, тобто захоплюється позитивними іонами, а частина, що захоплюється нейтральними молекулами, утворює негативні іони. Час життя вільного електрона складає близько 10-6с. Оскільки процеси іонізації і рекомбінації проходять одночасно, то при визначеній температурі і тиску настає рівновага, при якій забезпечується постійна концентрація іонів. На підставі результатів досліджень встановлено, що в звичайних умовах се-редня концентрація позитивних іонів у повітрі складає 750 1/см3, а негативних – 650 1/см3.

Під впливом зовнішніх факторів газ здобуває хоч і дуже малу, але певної величини електропровідність, що називається несамостійною. При збільшенні напруги, що прикладається до газового проміжутку, виникає ударна іонізація електронами, які під дією поля здобувають кінетичну енергію, достатню для іонізації нейтральних молекул при їхньому зіткненні. Одночасно з іонізацією газу відбувається і рекомбінація позитивних і негативних іонів з утворенням нейтральних молекул. Електропровідність газу, обумовлена ударною іоніза-цією, називається самостійною.

На рис.2.2. приведена вольтамперна характеристика газового проміжутку. У випадку утворення електропровідності під дією зовнішніх факторів при незначній напрузі струм дуже малий і баланс процесів утворення іонів і їхньої рекомбінації зберігається. У розглянутому режимі виконується закон Ома

, (2.5)

де J – щільність струму; - питома провідність; U – напруга, що прикладаєть-ся; h - відстань між електродами.

На рис 2.2. цей режим відповідає ділянці ОА.

I С

В

А

О U

Рис 2.2 – Вольтамперна характеристика газового проміжку.

При подальшому збільшенні напруги баланс процесів утворення іонів і їхньої рекомбінації порушується, тому що іони несуться до електродів, не встигаючи рекомбінувати. Струм росте повільніше напруги (ділянка АВ). Зменшення концентрації іонів продовжується з ростом напруги і при певному його значенні настає насичення (ділянка ВС). Іони, що утворяться під впливом зовнішніх іонізаторів, несуться до електродів. Щільність струму в цьому випадку дорівнює

J = N q h, (2.6)

де N – кількість позитивних і негативних іонів; q – заряд іона; h – відстань між електродами.

Подальше збільшення напруги супроводжується посиленням ударної іоні-зації і збільшенням кількості вільних електронів практично в геометричній прогресії, що приводить до різкого зростання струму.

 

2.2. Електропровідність рідких діелектриків

Електропровідність у рідких діелектриках виникає при пересуванні іонів чи переміщенні відносно великих заряджених колоїдних часток, а також елек-тронів.

Полярні рідини завжди мають підвищену провідність у порівнянні з непо-лярними, причому зростання діелектричної проникності приводить до зрос-тання провідності.

У неполярних рідинах електропровідність визначається наявністю дисо-ційованих домішок, особливо вологи. Очищення рідких діелектриків від домі-шок, що містяться в них, забезпечує зменшення провідності. Однак повністю очистити рідкий діелектрик від домішок, що містяться в ньому, практично не вдається, що утруднює одержання електроізоляційної рідини з малою питомою провідністю.

На величину питомої провідності будь-якої рідини істотно впливає темпе-ратура. З її підвищенням зростає провідність, тому що зменшується в'язкість рідини, зростає рухливість іонів і може збільшитися ступінь теплової дисо-ціації.

Відповідно до закону Вальдена, добуток питомої провідності рідкого діелектрика на його в'язкість є величиною постійною і не залежить від темпе-ратури. Закон Вальдена виконується краще для чистих рідин і гірше при наявності в них домішок. Для неполярних рідин відступ від закону Вальдена більш помітний, ніж для полярних. На рис 2.3 наведена залежність струму від напруженості полю в рідких діелектриках.

I    
     
    Е

 

Рис 2.3 – Залежність струму від напруженості поля в рідкому діелектрику

Питома провідність залежно від концентрації іонів може бути представ-лена рівнянням , де n – число іонів у см3; q – заряд іона; u+ і u- - рухливість, відповідно позитивних і негативних іонів.

При невеликих значеннях напруженості електричного поля рухливість позитивних і негативних іонів незначна, порядку 10-4 см2/сВ. У цьому випадку, внаслідок малої довжини вільного пробігу електрони не встигають одержати достатню кінетичну енергію для ударної іонізації. Струм підкоряється закону Ома. При напруженостях електричного поля 10 МВ/м і більше закон Ома вже не виконується, що пов'язано з появою електронної провідності внаслідок ударної іонізації і збільшенням числа іонів, що рухаються під дією поля. Пито-ма провідність очищених технічних рідких діелектриків знаходиться в межах 10-8– 10-13 1/Ом м.

У колоїдних системах спостерігається моліонна чи електрофоретична елек-тропровідність, при якій носіями зарядів є групи молекул – моліонів. Швид-кість руху таких часток залежить від в'язкості рідини. Відповідно до закону Стокса стала швидкість руху кулі в в’язкому середовищі визначається як

V = , (2.7)

де F – сила, що діє на кулю; r – радіус кулі; η – динамічна в'язкість.

Сила, що діє на електричний заряд і викликає його спрямоване перемі-щення, дорівнює F = q E. Тоді

V = (2.8)

Рухливість зарядів визначається як u = V/E. Звідси визначимо з наведеного рівняння рухливість носіїв зарядів у рідких діелектриках:

u = (2.9)

З даного рівняння видно, що рухливість носіїв зарядів у рідких діелектри-ках істотно залежить від розмірів часток і в'язкості рідини.

У загальному виді питому провідність діелектриків можна представити у виді . Тоді, з урахуванням вищенаведеного рівняння, питому провід-ність рідкого діелектрика при моліонній електропровідності визначимо як

. (2.10)

Питома провідність рідких діелектриків сильно залежить від температури, тому що при її підвищенні зменшується в'язкість рідини і збільшується кон-центрація вільних носіїв зарядів унаслідок теплової дисоціації. Дана залежність має вигляд

, (2.11)

де а – температурний коефіцієнт збільшення питомої провідності.

 

2.3. Електропровідність твердих діелектриків

Електропровідність твердих діелектриків обумовлена пересуванням іонів або наявністю в них вільних електронів.

Вид електропровідності можна встановити експериментально, викорис-товуючи закон Фарадея. Іонна електропровідність супроводжується переносом речовини, тобто явищем електролізу. При електронній електропровідності дане явище не спостерігається.

У діелектриках з атомними чи молекулярними ґратками електропровід-ність залежить тільки від наявності домішок. Як правило, питома провідність таких матеріалів незначна.

Більшість застосовуваних на практиці твердих діелектриків мають іонну електропровідність. Це синтетичні й органічні полімери, неорганічне скло, керамічні матеріали, кристали і т.д. Пов'язано це з тим, що енергія звільнення іонів у твердих діелектриках не перевищує 5еВ, тоді як для електронів вона більше 5еВ.




Поделиться с друзьями:


Дата добавления: 2014-11-09; Просмотров: 1232; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.