Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные положения клеточной теории




1. Клетка — наименьшая единица живого.

2. Клетки всех организмов имеют сходное строение.

3. Новые клетки образуются путем деления материнской клетки.

4. Многоклеточные организмы состоят из клеток, объеди­ненных в ткани и органы, регулируемые нервной, эндокрин­ной и иммунной системами.

Симпласт — многоядерные протоплазматические тяжи (волокна мышц).

Синцитий — соклетие, группа клеток, соединенных цито- плазматическими мостиками.

Клетка — элементарная живая система, состоящая из ядра и цитоплазмы и являющаяся основой развития, стро­ения и функции организма.

Состав цитоплазмы. Цитоплазма включает органеллы, располагающиеся в гиалоплазме.

Гиалоплазма в жидком состоянии — золь, в твердом со­стоянии — гель.

В состав гиалоплазмы входят раствор минеральных со­лей, углеводы, белки, аминокислоты, ферменты. Солей калия больше внутри клетки, меньше — снаружи; соли натрия в ги­алоплазме образуют изотонический раствор (0,9 %). Поэтому если клетку поместить в дистиллированную воду, то она бу­дет набухать; если же ее поместить в гипертонический ра­створ натрия или в концентрированный раствор глюкозы, то она будет сморщиваться.

Функции гиалоплазмы. В гиалоплазме происходят анаэ­робное окисление, самосборка микротубул и микрофиламентов, транспорт субъединиц рибосом и РНК. Гиалоплазма является средой, обеспечивающей жизнедеятельность органелл.

Клеточные мембраны. Клеточные мембраны включают плазмолемму и внутриклеточные мембраны. Все мем­браны, в свою очередь, включают 60 % белков, 40 % липидов. Все мембраны обладают избирательной проницаемостью.

Внутриклеточные мембраны включают липиды: хо­лестерин, сфингомиелины, фосфолипиды. Молекулы липи­дов образуют 2 слоя: 1) гидрофильные головки липидов имеют заряд и обращены к поверхностям мембраны, 2) ги­дрофобные хвосты не имеют заряда и обращены к хвостам второго билипидного слоя. Толщина 10 % углеводов внутри­клеточных мембран составляет 6 нм.

Свойства билипидного слоя: обладает способностью к са­мосборке и к самовосстановлению, обладает текучестью.

Белки мембран состоят из аминокислот. Те участки моле­кул белков, где аминокислоты имеют заряд, обращены к го­ловкам молекул липидов, а где аминокислоты не имеют заря­да — к их хвостам.

По локализации в мембране белки делятся на интеграль­ные, полуинтегральные и примембранные. Интегральные белки погружаются в оба билипидных слоя, полуинтеграль­ные — только в один слой, примембранные — расположены на поверхности билипидного слоя.

Свойства белков мембран заключаются в их способности вращаться вокруг оси, изменять ось вращения и переме­щаться благодаря текучести билипидного слоя.

По функции белки делятся на транспортные, фермент­ные, структурные и рецепторные.

Плазмолемма. Плазмолемма отличается от внутрикле­точных мембран большей толщиной — 10 нм (толщина вну­триклеточных мембран составляет 6 нм). Толщина плазмолеммы увеличена за счет гликокаликса, состоящего из гликолипидов и гликопротеидов. Кнутри плазмолеммы прилежит субплазмолеммальный слой, состоящий из филаментов, включающих сократительные белки (актин, миозин, тропамиазин, альфа-актинин).

Функции плазмолеммы: 1) транспортная: 2) барьерная (отделяет содержимое клетки от окружающей ее среды); 3) рецепторная.

Транспортная функция. Хорошо известно, что через плазмолемму могут транспортироваться микромолекулы, макро­молекулы, микрочастицы и капельки воды. Микромолекулы (ионы, молекулы воды, аминокислоты) могут транспортиро­ваться под влиянием градиента концентрации и против гради­ента концентрации; при транспортировке против градиента концентрации затрачивается энергия, выделяемая при распа­де аденозинтрифосфата (АТФ), — активный транспорт, под влиянием градиента концентрации — пассивный транс­порт; для транспортировки натрия и калия имеется специаль­ная Na+, К+-аденозинтрифосфатаза (АТФаза).

Рецепторная функция. Рецепторы состоят из гликолипидов и гликопротеидов. Они могут быть диффузно рассеяны по поверхности цитолеммы или сконцентрированы в одном ме­сте. При помощи рецепторов клетки узнают друг друга и, объединяясь, формируют ткани; рецепторы захватывают гормоны, антигены, антитела, эритроциты барана и другие вещества; при захвате гормона активируется аденилатциклаза, под влиянием которой синтезируется сигнальная мо­лекула, т. е. циклический аденозинмонофосфат (цАМФ), кото­рая активирует ферменты клетки. Сигнальной молекулой мо­жет быть кальмодулин.

Поглощение клеткой твердых и жидких частиц называет­ся эндоцитозом. Эндоцитоз подразделяется на фагоцитоз и пиноцитоз.

Фагоцитоз — это поглощение макромолекул и макроча­стиц. Этот процесс складывается из адгезии частицы к плазмолемме, которая затем впячивается внутрь клетки, втяги­вая туда частицу, и, наконец, отшнуровывается. В результате образуется фагосома, состоящая из частицы, окруженной мембраной. Мембрана фагосомы формируется за счет плазмолеммы, т. е. при фагоцитозе происходит расходование плазмолеммы.

Пиноцитоз осуществляется аналогично фагоцитозу, толь­ко вместо плотной частицы захватывается капелька жидко­сти с растворенными в ней веществами, а захваченная ка­пелька называется пиноцитозным пузырьком.

Если через плазмолемму вещества поступают из клетки во внешнюю среду, то это называется экзоцитозом. При экзоцитозе секреторная гранула или остаточное тельце, окруженные мембраной, приближаются к внутренней поверхности плазмолеммы. Мембрана гранулы и плазмолемма сливаются, разрываются, и содержимое гранулы удаляется из клетки, а ее мембрана входит в состав плазмолеммы, т. е. при экзоцитозе плазмолемма как бы пополня­ется за счет мембран гранул.

Соединения клеток. Ткани, состоящие из клеток, не рас­падаются на отдельные клетки, потому что между клетками имеется сеть белков, обладающих адгезивными свойствами; кроме того, между клетками имеются межклеточные контак­ты (junctio intercellularis). Среди этих контактов различают: простые, плотные, адгезивные пояски, десмосомы, щелевидные, по типу замка и межнейрональные синапсы.

Простые контакты (junctio intercellularis simplex) харак­теризуются тем, что плазмолеммы соседних клеток прибли­жаются друг к другу на расстояние 15-20 нм, так что между клетками образуются межклеточные щели. Такие контакты обычно характерны для соединительнотканных клеток.

Плотные контакты, или замыкательные пластинки (zo­nula occludens), характеризуются тем, что цитолеммы клеток плотно прилежат друг к другу, закрывая межклеточные ще­ли; такие контакты характерны для железистой эпителиаль­ной ткани.

Адгезивные пояски (zonula adherens) — парные образова­ния в виде лент, опоясывающие апикальную часть клеток, характерны для однослойных эпителиев. Здесь клетки связа­ны друг с другом интегральными гликопротеидами, к кото­рым со стороны цитоплазмы той и другой клетки примыкает слой примембранных белков.

Десмосомы (desmosoma) характеризуются тем, что между цитолеммами двух клеток имеются слоистые структуры в пределах 0,5 мкм, а с внутренней поверхности плазмолемм напротив них имеется электронно-плотное вещество, прони­занное тончайшими фибриллами. Эти контакты характерны для клеток покровного эпителия. Их функция — механиче­ская связь между клетками.

Щелевидные контакты (nexus) характеризуются тем, что плазмолеммы смежных клеток приближаются друг к другу на расстояние 2-3 нм; в этом месте, занимающем всего около 1 мкм, имеются ионные канальцы, через которые между клетками происходит обмен ионами и молекулами воды. Такие контакты характерны для клеток гладкой мускулатуры и мышечных клеток сердечной мышцы.

Контакты по типу замка (junctio interdigitalis) характе­ризуются тем, что цитолемма одной клетки внедряется во впячивание другой клетки. Эти контакты выполняют функдию механической связи между клетками и характерны для клеток эпителиальной ткани.

Межнейроналъные синапсы (synapsis) связывают нервные клетки или их отростки друг с другом и служат для передачи нервного импульса от клетки к клетке в одном направлении (от пресинаптического полюса к постсинаптическому).

Органеллы клетки. Органеллы — постоянные структуры клетки, выполняющие определенные функции. Органеллы классифицируются на: 1) мембранные и немембранные и 2) постоянные и специальные.

К мембранным органеллам относятся эндоплазматическая сеть (гранулярная и гладкая), комплекс Гольджи, лизосомы, пероксисомы, митохондрии).

Гранулярная эндоплазматическая сеть (reticulum endoplasmaticum granulosum) представлена мембранами, сфор­мированными в цистерны, канальцы, везикулы, трубочки, покрытые рибосомами. Выполняет функции: синтез белков, транспортная. Гранулярная эндоплазматическая сеть (ЭПС), представленная параллельно расположенными цистернами, размещающимися в определенном месте, называется эргастоплазмой.

Если в клетке хорошо развита гранулярная ЭПС, то в ней активно синтезируются белки на экспорт, ферментные белки.

Гладкая эндоплазматическая сеть (reticulum endoplasmaticum nongranulosum) представлена канальцами, цистернами, везикулами, окруженными мембранами, ли­шенными рибосом. Выполняет функции: синтез углеводов, липидов, стероидных гомонов; дезинтоксикация ядовитых веществ, депонирование ионов Са2+ в цистернах и транспорт синтезированных веществ.

Комплекс Гольджи (complexus Golgiensis) представлен внутриклеточными мембранами, формирующими цистер­ны, везикулы, канальцы. Несколько параллельно располо­женных цистерн образуют диктиосомы, связанные друг с другом при помощи везикул, канальцев. В железистых клет­ках комплекс Гольджи располагается над ядром, в нервных клетках — вокруг ядра, в хромаффинных клетках мозгового вещества надпочечников — в виде колпачка около ядра; в не­которых клетках комплекс Гольджи диспергирован.

Функции комплекса Гольджи:

1) сегрегация (отделение от гиалоплазмы синтезированных на ЭПС продуктов). Если в образовавшихся в результате сегрегации везикулах содер­жится секрет, то эти везикулы называются секреторными гранулами, если лизосомальные ферменты — лизосомами;

2) выделительная;

3) восстановление цитолеммы (при выде­лении секреторных гранул их мембрана входит в состав плазмолеммы);

4) модификация (присоединение к поступившим из ЭПС продуктам углеводов и других веществ);

5) участие в формировании лизосом (на гранулярной ЭПС синтезируют­ся лизосомальные ферменты, которые при поступлении в комплекс Гольджи накапливаются в латеральных отделах цистерн, затем эти накопления в виде пузырьков отделяются от цистерн и превращаются в лизосомы).

Лизосомы (lysosomae) — везикулы, окруженные внутри­клеточной мембраной и содержащие протеолитические фер­менты — гидролазы. Маркерным ферментом лизосом являет­ся кислая фосфатаза. Лизосомы классифицируются на: 1) первичные; 2) вторичные и 3) третичные — остаточные тельца (corpusculum residuale). Первичные лизосомы образу­ются при участии гранулярной ЭПС и комплекса Гольджи (см. выше); их диаметр 0,3-0,4 мкм. Вторичные лизосомы об­разуются при слиянии первичных лизосом с фагосомами (фагоцитированными клеткой частицами). В результате взаимодействия ферментов с фагосомой происходит ее рас­щепление до мономеров, которые через мембрану лизосом транспортируются в гиалоплазму.

Если первичные лизосомы сливаются с органеллами клетки (рибосомами, митохондриями и др.), то они называ­ются аутофагосомами. Наличие в клетке большого количе­ства аутофагосом является признаком саморазрушения клетки — метаболический стресс, патология клетки, повреж­дение клетки.

Третичные лизосомы, или остаточные тельца, предста­вляют собой пищеварительные вакуоли, в которых остались продукты, не подвергшиеся разрушению лизосомальными ферментами. Они удаляются из клетки путем экзоцитоза.

Функции лизосом:

1) участие во внутриклеточном пище­варении; наличие в клетке большого количества лизосом яв­ляется признаком того, что эта клетка выполняет фагоцитар­ную функцию;

2) предотвращение гибели клетки. Если в клетке мало или нет лизосом, то она погибает от накопле­ния углеводов и липидов.

Пероксисомы (peroxisoma) представляют собой разновид­ность лизосом. Их диаметр составляет от 0,3 до 1,5 мкм. Фер­менты пероксисом окисляют аминокислоты, в результате че­го образуется перекись водорода, которая является ядом для клетки и расщепляется при помощи пероксидазы этих органелл. Маркерным ферментом пероксисом является каталаза.

Митохондрии (mitochondrie) имеют округлую, чаще вытя­нутую форму, их диаметр составляет 0,3, длина — 0,5 мкм и более. Они окружены двойной мембраной. Между мембра­нами имеется межмембранное пространство. От внутренней мембраны отходят кристы. Между кристами расположен матрикс. В матриксе выявляются тонкие нити (2-3 нм) — митохондриальные ДНК и мелкие гранулы (15-20 нм) — митохондриальные рибосомы.

Функции митохондрий. В митохондриях осуществляется: 1) синтез тринадцати видов митохондриальных белков; 2) об­разование АТФ из органических веществ и 3) фосфорилирование АДФ, в результате чего образуется АТФ.

К немембранным органеплам относятся рибосомы, клеточный центр и микротубулы. Рибосомы (ribosomae) об­разуются в ядрышке ядра, состоят из малой и большой су­бъединиц, имеют размеры 25 Ч 20 Ч 20 нм, включают рибосомные РНК и рибосомные белки. Функция — в рибосомах осуществляется синтез белков. Рибосомы могут либо распо­лагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопле­ния — полисомы. Если в клетке хорошо развита грануляр­ная ЭПС, то эта клетка относится к дифференцированным и синтезирует белки на «экспорт»; если в клетке слабо ра­звита гранулярная ЭПС и много свободных рибосом и поли­сом, то эта клетка малодифференцированная и синтезирует белки для внутреннего употребления.

Клеточный центр (centrosoma, cytocentrum), или диплосома, состоит из 2 центриолей. Одна из центриолей называ­ется материнской, другая — дочерней. Дочерняя центриоль располагается перпендикулярно по отношению к материн­ской. Каждая центриоль диплосомы имеет форму цилиндра шириной около 0,2 и длиной до 0,5 мкм. В состав стенки цен­триолей входят 9 триплетов микротубул (3x9+0). От микротубул отходят спутники (сателлиты). От диплосомы в разных направлениях идут микротубулы, которые в совокупности образуют центросферу.

Перед делением клетки центриоли клеточного центра рас­ходятся к ее полюсам. В таком случае каждая из центриолей становится материнской. К каждой материнской центриоли пристраивается новая, дочерняя, центриоль. Образование дочерней центриоли индуцируется материнской центриолью. Таким образом, в клетке перед делением имеется 2 кле­точных центра.

Функция клеточного центра проявляется в том, что в ин­терфазной клетке материнская центриоль индуцирует:

1) об­разование микротубул, формирующих цитоскелет клетки;

2) в конце интерфазы — образование дочерней центриоли. В делящейся клетке материнская центриоль индуцирует об­разование микротубул веретена деления.

Макротубу лы в делящейся клетке входят в состав верете­на деления, в интерфазной клетке образуют цитоскелет, вхо­дят в состав ресничек, жгутиков и стенки центриолей. Внеш­ний диаметр микротубул равен 24 нм, внутренний — около 15 нм, толщина стенки 5 нм. В состав микротубул входят белки-тубулины, из которых образуются кольца, накладываю­щиеся друг на друга. В каждое кольцо входит по 13 субъеди­ниц. Самосборка микротубул происходит в гиалоплазме под влиянием материнской центриоли. При снижении темпера­туры ниже температуры тела самосборка микротрубочек прекращается, а уже образовавшиеся микротубулы начина­ют распадаться, клетка утрачивает свою обычную форму. Распад микротубул происходит и под влиянием колхицина.

Функции микротубул:

1) являются цитоскелетом, сохра­няя определенную форму клетки;

2) участвуют во внутрикле­точном движении;

3) участвуют в движении ресничек и жгу­тиков.

При внутриклеточном движении осуществляется перемещение в гиалоплазме вакуолей, митохондрий и др. Пе­ремещение происходит с участием белков-транслокаторов, которые прикрепляются к транспортируемым структурам, движущимся вдоль микротубул как по рельсам.

Фибриллярные структуры клетки (микрофиламенты, микрофибриллы)

Микрофиламенты (microfilamenti) — нитчатые структу­ры диаметром около 6 нм, состоят из сократительных белков актина, миозина, тропомиозина, альфа-актинина; распола­гаются под цитолеммой, образуя примембранный слой. При сокращении микрофиламентов цитолемма втягивается внутрь клетки при фагоцитозе, пиноцитозе и при телофазе во время разделения вновь образующихся клеток. Микрофила­менты участвуют в выбрасывании псевдоподий при амебо­видном движении клеток.

Функции микрофиламентов:

1) образуют цитоскелет;

2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивании цитолеммы при фагоцитозе);

3) участвуют в амебовидном движении клеток.

Микрофибриллы (microfibrillae) — нитчатые структуры диаметром около 10 нм, состоят из фибриллярных белков. Эти белки в клетках различных тканей неодинаковы. Фи­бриллярными белками в эпителиальных тканях являются ке­ратины, в фибробластах соединительной ткани — виментин, в клетках гладкой мышечной ткани — десмин.

Функциональное значение микрофибрилл (промежуточ­ных филаментов):

1) образуют скелет клетки;

2) по характеру фибриллярного белка можно определить, из какой ткани раз­вилась опухоль. Например, если в опухоли обнаружен кера­тин, значит, она образовалась из эпителиальной ткани; если обнаружен виментин — из соединительной ткани, и т. д.

Реснички (cilii) — специальные органеллы движения представляют собой выросты эпителиальных клеток высо­той 5-10 мкм, диаметром около 300 нм. В основе ресничек находится аксонема (filamenta axialis), состоящая из 9 пар пе­риферических и 1 пары центральных микротубул (2×9+2), прикрепляющихся к базальному тельцу (видоизмененной центриоли). Аксонема снаружи покрыта цитолеммой.

Функции ресничек: осуществляют движения колебатель­ные, круговые, крючкообразные. Благодаря движению рес­ничек эпителия дыхательных путей очищается поверхность слизистой оболочки от посторонних частиц и слизи. Однако под воздействием вдыхаемого курильщиками дыма реснич­ки склеиваются, и прекращается удаление микроорганиз­мов, частиц пыли и т. п. с поверхности слизистой оболочки трахеи и бронхов, в результате чего развивается хрониче­ский бронхит.

Жгутики (flagellum) — выросты клеток длиной до 150 мкм. В основе их также лежит аксонема, покрытая цито­леммой и прикрепляющаяся к базальному тельцу. Толщина аксонемы и базального тельца жгутиков и ресничек равна 200 нм. Жгутики содержатся в сперматозоидах.

Функции жгутиков: благодаря колебаниям жгутиков клет­ки движутся в жидкости.

Микроворсинки — выросты цитоплазмы клеток длиной около 1 мкм, диаметром около 100 нм; покрыты цитолеммой, в их основе имеются пучки микрофиламентов.

Функции микроворсинок:

1) увеличивают поверхность клеток;

2) в кишечном и почечном эпителии осуществляют всасывающую функцию.

Включения цитоплазмы (inclusiones cytoplasmae) — непостоянные компоненты клеток, возникающие и исчезаю­щие в зависимости от клеточного метаболизма.

Классификация включений. Включения делятся на тро­фические (белковые, углеводные, липидные), секреторные, экскреторные (продукты, подлежащие удалению из клетки и организма), пигментные, которые подразделяются на экзо­генные (частицы пыли, каротин, красители) и эндогенные (гемоглобин, миоглобин, липофусцин, гемосидерин, мела­нин, липохромы, билирубин).




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 730; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.059 сек.