Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биологические аспекты старения и смерти. 2 страница




Стволовая клетка - это примитивная малодифференцированная клетка, которой присуща высокая способность к пролиферации. Стволовая клетка обладает плюри-потентностью и способна дифференцироваться в разных направлениях с образова­нием специализированных тканей.

В тканях всех органов присутствуют резистентные стволовые клетки, они нико­гда не покидают данный орган (желудочки головного мозга, дно крипт кишечника). При необходимости резистентные стволовые клетки дают клетки любой ткани. По­лагают, что стволовые клетки сохраняются у человека в течение всей жизни, но с возрастом их количество уменьшается.

Циркулирующие стволовые клетки присутствуют в мезенхимальной ткани, в клетках костного мозга.

Надо отметить, что хотя в печени регенерация осуществляется за счёт дифферен­цированных клеток, но в ней также есть и стволовые клетки.

Существует и другая точка зрения в отношении источника материала для регене­рации. Так Л.В. Полежаев считает, что источником регенерационного материала яв­ляются дедифференцированные клетки тканей, которые образуются в ответ на по­вреждение. Другие считают, что источником регенерационного материала являются обычные клетки тканей, прошедшие активацию в ответ на повреждение (печень, легкие).

 

11. Регенерация и онтогенез.

Связь регенерации с онтогенезом.

Необходимо указать, что по мере старения организма регенерационная способ­ность сохраняется. Масштаб регенерации от возраста не зависит. Однако с возрас­том падает скорость регенерации, так как уменьшается количество стволовых кле­ток, в частности мезенхимальных стволовых клеток. Так у 65 летнего человека их 10 раз меньше (у 15 летнего подростка 1: 100.000, у 65 летнего —1:1.000.000)

 

12. Регуляция регенерации.

Регуляция осуществляется на различных уровнях:

- внутриклеточный (циклические нуклеотиды и ионы Са2+)

- межтканевой (факторы лимфоцитов)

- тканевой (кейлоны, ингибирующие пролиферацию и антикейлоны)

- системный (нервная, эндокринная).

В последние годы доказана важная роль иммунной системы и факторов лимфо­цитов (лимфокины), которые определяют во многом и полноту и скорость восста­новления. Бабаева: после резекции печени крысы у неё берутся лимфоциты и вво­дятся интактной крысе. У интактной крысы начинается активная пролиферация клеток печени, печень увеличивается в размерах.

 

13. Регенерация патологически измененных органов.

Регенерация патологически измененных органов - важная проблема и с биологи­ческой, и с медицинской точки зрения. Вредные воздействия на организм (вирусы, бактерии, голодание, облучение, токсические вещества) приводят к изменениям во внутренних органах, развивается патология (воспаление, развитие соединительной ткани и др.). В ответ на повреждение включаются процессы регенерации.

В настоящее время показано, что регенерация патологически измененных орга­нов имеет свои особенности по сравнению с регенерацией после резекции органа, хотя могут быть и общие способы осуществления регенерации.

в некоторых случаях регенерация патологически измененных органов проте­кает по типу регенерационной гипертрофии. Это происходит тогда, когда по­гибает целиком, пораженный участок органа. Например, если пузыри эхино­кокка разрушают долю печени, в которой они поселились, то оставшаяся часть печени претерпевает изменения по способу регенерационной гипертрофии, то есть оставшаяся часть печени увеличивается.

однако, такой способ регенерации патологически измененных органов не час­тое явление. Как правило, поражение органа бывает диффузным, особенно по­сле действия токсических веществ, вирусов (болезнь Боткина), бактерий (ту­беркулёз). Поэтому процесс восстановления начинается с внутриклеточной ре­генерации, которая возвращает клетки в исходное состояние, а потом наступа­ет пролиферация клеток.

14. Значение регенерации для медицины.

Изучение процессов регенерации имеет большое значение для медицины.

позволяет найти пути к восстановлению тканей и органов человека после по­вреждения (у детей до 5-6 лет восстанавливаются только концевые фаланги пальцев после ампутации)

позволяет разработать методы стимуляции процессов регенерации у человека.

зная закономерности регенерации, можно разобраться с такими явлениями, как злокачественный рост и иммуногенез, так как в основе всех живых явлений (регенерация, новообразования, иммуногенез) лежат примерно одни и те же клеточные механизмы.

15. Значение советских ученых в разработке учения о регенерации.

Студитский А.Н. изучал регенерацию мышц и костей (путем заполнения дефекта). Воронцова М.А. изучала регенерацию внутренних органов путем регенерационной гипертрофии (печень, почки).


ЛЕКЦИЯ 17 Гомеостаз. Трансплантация. Биоритмы.

 

1. Гомеостаз – свойство организмов сохранять постоянство внутренней среды.

Важной характеристикой живых существ является то, что они – открытые системы. Это общее свойство, характерное и для одноклеточных, и для многоклеточных организмов. Через живые системы проходят 3 потока: вещества, энергии, информации.

Организм человека является также открытой системой. Однако, несмотря на откры­тость организма для внешней чреды и наличие трёх потоков, организм сохраняет свое постоянство, как в функциональном, так и в морфологическом отношении. Для объе­динения всех процессов, обеспечивающих устойчивость организма, американский фи­зиолог Уолтер Кэннон в 1929г. предложил термин гомеостаз.

Гомеостаз – свойство живых существ поддерживать и сохранять постоянство как функциональных, так и морфологических признаков, несмотря на изменчивость усло­вий их существования.

Термин «внутренняя среда» впервые употребил французский гистолог Ш. Робен, но теорию внутренней среды создал Клод Бернар в 1878г. Но пока еще продолжаются споры о том, что понимать под этим термином.

К внутренней среде относятся кровь, лимфа, тканевая жидкость, которая омывает каждую клетку живого организма, принимая участие в питании и обмене веществ ор­ганов и тканей, которые имеют определенные физиологические и химические посто­янные показатели. Например, pH крови 7,36–7,40; АД 120/80мм.рт. ст.; содержание АТФ в клетке – 0,4%.

Однако в последние годы под постоянством внутренней среды понимают с одной стороны постоянство молекулярных, субклеточных, клеточных, тканевых структур, а с другой стороны постоянство обменных процессов, от которых зависит постоянство химического состава и физиологических функций организма.

 

2. Организм как открытая саморегулирующая система. Общие (кибернети­ческие) закономерности гомеостаза живых систем.

Организм сохраняет постоянство внутренней среды, потому что он является открытой саморегулирующейся системой.

Принципы существования таких систем изучает наука кибернетика – наука об об­щих закономерностях управления. Пользуясь терминологией кибернетики, можно ска­зать, что живой организм представляет собой сложную управляемую систему, в кото­рой постоянно происходит взаимодействие множества факторов внешней и внутрен­ней среды.

Входной сигнал —> Управляющее устройство (УУ) —> Объект управления (ОУ) —> (раздражитель) —> Выходной сигнал (эффект)

Управляющее устройство обнаруживает отклонение от гомеостатического равновесия при действии на него какого–то входного сигнала (раздражителя) и вырабатывает на основе полученной информации управляющий сигнал. Этот сигнал поступает на объ­ект управления по каналу связи. Объект управления осуществляет реакции, направ­ленные на приближение к состоянию гомеостатического равновесия. Сведения о дос­тигнутом результате работы этой системы (сведения об эффекте, ответе, реакции) вновь поступают на управляющее устройство через канал обратной связи.

И управляющее устройство формирует новый сигнал для дальнейшего поддержания гомеостатического равновесия.

В процессах саморегуляции важную роль играет обратная связь. Что это такое? Об­ратная связь – это влияние выходного сигнала на управляющее устройство. Различают положительную и отрицательную обратную связь. Положительная обратная связь уве­личивает действие входного сигнала на величину выходного сигнала. Отрицательная обратная связь обладает противоположным эффектом – она уменьшает влияние вход­ного сигнала на величину выходного сигнала и таким образом, способствует восста­новлению исходных параметров. Поэтому именно эта связь лежит в основе регуляции гомеостатических реакций.

Например, при потере крови в кровеносном русле понижается содержание ионов Са2+, что служит сигналом для эндокринной системы, она в свою очередь выделяет в кровь вещества способствующие выходу Са2+ из костной ткани в кровь. При восста­новлении содержания ионов Са2+ в крови эндокринная система перестает стимулиро­вать выход этих ионов из костной ткани.

Можно выделить следующие уровни гомеостатических механизмов

1. Генетический уровень.

2. Клеточный уровень (внутриклеточный).

3. Тканевой уровень

4. Системный уровень:

• нервная система

• эндокринная система

• система неспецифической защиты

• иммунная система

3. Генетические основы гомеостаза.

Генетический уровень обусловлен двумя явлениями: 1) стабильностью структуры и функционирования генетического материала 2) генетическим контролем гомеостатических реакций

Стабильность генома обеспечивают:

• диплоидность организма, предполагающая защиту от мутаций

• вырожденность генетического кода, позволяющая нейтрализовать повреждения

триплетов, кодирующих одну и ту же аминокислоту

• репликация ДНК, обеспечивающая точную передачу наследственной информа-­

ции в ряду поколений

• репарация ДНК, которая позволяет ликвидировать возникающие повреждения

• защита ДНК от факторов среда белками гистонами.

В организме гомеостатические реакции находятся под генетическим контролем:

— в свертывание крови участвуют 13 белков (факторов свертывания), а т.к. за каж­дый белок отвечает свой ген, то в этой гомеостатической реакции задействовано 13 генов.

— иммунные реакции связаны с выработкой белков–антител, которые являются ре­зультатом функциональной активности соответствующих генов.

4. Клеточные механизмы гомеостаза.

Считается, что регуляторные механизмы клеток возникли еще на заре эволюции и наследственно закрепились в виде ингибирующих реакций. При этом УУ и ОУ совме­щены в одной клетке.

ДНК —> транскрипция —> трансляция — белок–фермент —> продукт

(ген) ферментативной реакции

 

 

А + В Р (продукт, который может ингибировать активность фермента)

 

 
 


Тканевой уровень (надклеточный).

На этом уровне регуляции УУ и ОУ находятся в разных клетках, которые обмени­ваются между собой сигналами. Так, тканеспецифические ингибиторы пролиферации клеток (кейлоны) управляют пролиферацией, ростом тканей с помощью отрицатель­ной обратной связи.

5. Системные механизмы гомеостаза:

Говоря о системном уровне гомеостаза, имеется в виду сохранение постоянства внутренней среды организма за счет функционирования нервной, эндокринной и им­мунной систем организма.

• нервная система

является организатором всех процессов, которые происходят во внутренних средах ор­ганизма, а также при взаимодействии организма с окружающей средой.

В процессе эволюции живых существ проявилась отчетливая тенденция к центра-

ли­зации управления. При этом между различными уровнями гомеостатического

регули­рования существует четкая иерархическая взаимосвязь. Наверху этой иерархической лестницы стоит ЦНС, точнее КБП.

КБП —►подкорковые образования —► эндокринная система —► клетки

 

внутриклеточные реакции

ССС ОДС ПС ВС

КБП (УУ) воспринимает раздражитель (входной сигнал), который поступает из внешней и внутренней среды. КБП оценивает эти сигналы и дает команды клеткам, тканям, органам, главным образом, через эндокринные железы. Эти железы выраба– ты­вают гормоны, они с кровью достигают ОУ и влияют на ферментные системы клетки. На системном уровне УУ и ОУ находятся даже в различных органах.

• эндокринная система

высшим центром регуляции эндокринных функций является гипоталамус, который посредством нейромедиаторов руководит работой других желез (гипофиз, половые, кора надпочечников).

Свое действие на клетки гормоны оказывают двумя путями: либо изменяют актив­ность генов, либо изменяют скорость биохимических реакций.

• иммунная система

Иммунитет – способ защиты организма от живых тел и веществ, несущих признаки генетически чужеродной информации.

Иммунная система – совокупность всех лимфоидных органов и скопления лимфо­идных клеток (тимус, селезенка, лимфоузлы, пейеровы бляшки, лимфоциты перифе­рической крови).

Особенности иммунной системы.

• генерализована по всему организму

• лимфоциты в составе крови постоянно циркулируют по организму

• клетки вырабатывают белки–антитела (иммуноглобулины) в ответ на проникно­вение антигенов (белки и полисахариды)

Центральная фигура иммунитета – лимфоциты. Они образуются в ККМ из стволовых клеток и поступают на дифференцировку либо в тимус (Т-лимфоциты), либо диффе­ренцируются прямо в костном мозге (В-лимфоциты).

Т-лимфоциты действуют на поступающие в организм чужеродные клетки и ткани, а также уничтожают собственные мутантные клетки (в организме происходит 106 му­таций в день). Значит, Т-лимфоциты отвечают за реализацию клеточного (трансплан­тационного) иммунитета. В-лимфоциты отвечают за гуморальный иммунитет, они вы­рабатывают антитела в ответ на проникновение антигенов в организм. Антителами яв­ляются иммуноглобулины: G, М, A, D, Е.

Иммунная система осуществляет специфическую защиту организма.

Однако в организме существует и система НЕ специфической защиты. Это кожа, сли­зистые оболочки, лизоцим слюны, фагоцитоз.

 

6. Структурные основы гомеостаза.

При этом имеют ввиду различные механизмы, которые обеспечивают сохранение постоянства структурной организации на всех уровнях организма (молекулярный, суб­клеточный, клеточный, тканевой, органный).

Структурная целостность организма обеспечивается физиологической и репаративной регенерацией.

Необходимо помнить, что в основе развития многих видов патологии лежат нару­шения структур организма – это первичное явление, а вторично – нарушение функции.

 

7. Адаптация. Роль нервной и эндокринной системы в ее обеспечении.

Если на организм действует какой-то фактор внешней среды, и организм сохраняет свою устойчивость, то говорят о том, что организм адаптировался к действию данного фактора.

Адаптация организма к тому или иному фактору среды формируется на основе гомеостатических механизмов. Причем при действии одного внешнего фактора включаются все гомеостатические механизмы.

Процесс адаптации не мгновенный, он происходит в течение определенного интервала времени и сопровождается определенной перестройкой организма.

Рассмотрим процесс адаптации на примере стресса.

фактор внешней среды —► мобилизация защитных сил организма —►

—►повышение резистентности организма

 

адаптация стадия истощения

 

Особую роль в адаптации организма к тому или иному внешнему фактору играет ЦНС и эндокринная система.

ЦНС (кора больших полушарий) воспринимает все раздражители (факторы), кото­рые действуют на организм, и вырабатывает управляющий сигнал. ЦНС посылает управляющий сигнал на различные системы организма (ССС, дых., пищ., выд.), но в первую очередь на эндокринные железы. Эндокринная система осуществляет кон­кретные реакции в организме, направленные на сохранение постоянства внутренней среды. Большое значение в адаптации организма имеет гипоталамо-гипофизарно-надпочечниковая система.

Гипоталамус выделяет особые вещества – релизинг-факторы, которые поступают в гипофиз. Гипофиз (передняя доля) вырабатывает АКТГ (адренокортикотропный), который воздействует на кору надпочечников и приводит к усиленному выбросу глюкокортикоидных гормонов.

Глюкокортикоидные гормоны воздействуют на различные звенья гомеостатических

механизмов (генетические, клеточные) и способствуют приспособлению организма к меняющимся условиям среды.

В адаптации большое значение имеет такой гормон гипофиза, как соматотропин (особенно в адаптации новорожденных).

Если на организм действует внешний фактор чрезвычайной силы (экстремальный), то может наступить истощение защитных сил организма, и организм в этих условиях не может сохранять постоянство внутренней среды. В этом случае говорят о том, что наступила стадия истощения (иначе это называют дистресс).

С биологической точки зрения, стресс – это очень полезная адаптивная реакция ор­ганизма на действие внешней среды. Но если человек длительное время испытывает дистресс, это приве­дёт к развитию заболевания.

 

8. Поведение как способ адаптации в среде обитания.

Организмы могут по–разному адаптироваться к меняющимся условиям среды. В не­которых случаях адаптируются путем изменения своего поведения.

Пример: сохранение температуры тела грызунами в условиях изменяющейся температуры окружающей среды. У грызунов очень несовершенна система терморегуляции. При высокой температуре окружаю­щей среды их движения замедляются, при низкой температуре окружающей среды их движения стано­вятся более активны.

 

9. Гомеостатические механизмы организма в разные возрастные периоды.

Эмбриональный период. В этот период организм относительно изолирован от ок­ружающей среды за счет организма матери. Гомеостатические механизмы несовер­шенны. Факторы внешней среды действуют, прежде всего, на организм матери, а через него на плод. Выделяют особые критические периоды, когда организм плода наиболее чувствителен и уязвим для факторов среды.

1) имплантация 2) гисто–и органогенез 3) плацентация 4) роды

Плацента обладает избирательной проницаемостью, поэтому JgМ, обеспечиваю­щий иммунитет против кишечных инфекций – не проходит через неё, и плод и ново­рожденный в первые дни жизни беззащитен перед кишечными инфекциями.

У новорождённого и в детском возрасте гомеостатические механизмы в целом не­совершенны. Наиболее стабильно функционируют гомеостатические механизмы в пе­риод зрелости, когда сформированы и функционируют все органы и системы.

При старении организма надежность функционирования гомеостатических механиз­мов падает, вместе с этим падает устойчивость организма к факторам внешней среды.

 

10. Проблема трансплантации органов и тканей.

Трансплантология – сравнительно молодая отрасль науки, насчитывает около 150 лет. Она сформировалась и развивалась в рамках пластической хирургии. В России рождение этой науки связано с именем Н. И. Пирогова.

В зависимости от видовой принадлежности донора и реципиента различают:

1. Аутотрансплантация (аутогенная) – один и тот же организм является и донором, и реципиентом. Трансплантат называют аутотрансплантат.

2. Гомо (алло) трансплантация (гомогенная). Донор и реципиент – организмы одно­го вида (от человека к человеку). Трансплантат называют гомотрансплантат.

3. Гетеро, или ксенотрансплантация (ксеногенная). Донор и реципиент – организмы разных видов. Трансплантат называют гетеротрансплантат или ксеногенный трансплантат.

Типичный вариант пересадки органа или ткани – донор и реципиент генетически разнородные. Трансплантат – гомотрансплантат.

Редкий вариант – пересадка органа или ткани производится от одного монозиготного близнеца другому.

Экспериментальный вариант – осуществляется в пределах инбредных животных (чистые линии). Трансплантат называется – изотрансплантат или сингенный. Наиболее успешно протекает аутотрансплантация.

Технически в настоящее время хирурги могут пересаживать любой орган любому ор­ганизму, но после любой аллотрансплантации начинается отторжение трансплантанта.

В 1964г. П. Медавар доказал, что биологическая природа отторжения относится к ка­тегории иммунологических реакций.

При пересадке чужеродной ткани в организм поступают антигены, которые есть на всех клетках, их нередко называют трансплантационные антигены или антигены гис­тосовместимости. Организм реципиента осуществляет различные иммунные реакции, которые направлены на разрушение трансплантата, т.е. его отторжение.

Методы ослабления тканевой несовместимости.

1. подбор иммунологически совместимых пар. Для этого изучают антигенный со­став клеток донора и реципиента. И если они отличаются как можно меньшим числом антигенов, их используют для трансплантации. Изучают, прежде всего, систему АВО и систему антигенов на лейкоцитах. Эта система генов лейкоци­тарных антигенов, называется HLA (human lymphocyte antigens), и расположена она в 6 хромосоме (иногда в литературе их обозначают как главный комплекс гистосовместимости).

2. ослабление иммунологической активности реципиента. С этой целью вводят специальные вещества, которые подавляют иммунную систему реципиента. Эти вещества называют иммунодепрессанты.

• 6-меркаптопурин – подавляет активность всех групп Т-лимфоцитов, а также всех пролиферирующих клеток.

• циклоспорин А – циклический пептид из 11 аминокислот. Подавляет только Т-хелперы (есть препарат эффективнее циклоспорина А в 70 раз)

• глюкокортикоиды – подавляют иммунологические реакции. Вместе с тем по­бочные действия: гипертония, сахарный диабет, злокачественные опухоли.

3. воздействие на трансплантат с целью ослабления его антигенной активности. Например, для пересадки печени можно использовать печень свиньи. Она подходит человеку по размерам и антигенному составу. Тем не менее, в зиготу, из которой будет получена свинья–донор, подсаживают человеческие гены, чтобы человече­ский организм скорее признал своей пересаженную свиную печень.

Пересадка печени – наиболее сложная и наиболее редко выполняемая процедура. Для человека оптимальна пересадка печени бабуина, геном которого на 90% совпадает с геном человека.

 

11. Биоритмы и их значение для человека.

Хронобиология – наука, изучающая ритмические процессы в биологических системах.

Биологические ритмы или биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменени­ям жизнедеятельности передается по наследству и обнаружена практически у всех жи­вых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Биологические ритмы человеческого организма сформировались путём эволюцион­ных адаптаций к ритмическим колебаниям факторов среды (день – ночь, прилив –отлив, сезоны).

Механизмы, лежащие в основе биоритмов организмов – биологические часы.

Где в организме человека находятся биологические часы)?

на уровне клетки: связь с распадом и синтезом веществ

на уровне организма: связь с ЦНС и эндокринной системой

Наиболее изучены суточные (циркадные) ритмы. Интервал – 24 часа.

• максимальное выделение в кровь соматотропина и выделение поджелудочного сока в 12перстную кишку происходит в предутренние часы

• максимальное выделение в кровь половых гормонов происходит в 8 утра

• механизмы самоочищения организма активизируются в интервале 4-7 часов

• ощущение боли более мягкое в 16-18 часов

• анальгетики лучше принимать утром

• оптимальное время принятия алкоголя 18-20 часов

С учетом циркадного ритма людей разделяют на «сов», «жаворонков» и «голубей». Так как их работоспособность варьирует в течение суток, то многие исследователи ре­комендуют подбирать работу с учетом этих ритмов. Если человек «голубь», то пик ра­ботоспособности приходится на три часа дня. Если «жаворонок», то время наиболь­шей активности организма падает на полдень. «Совам» рекомендуется самую напря­женную работу выполнять в 5-6 часов вечера. Самую напряженную работу легче вы­полнять, когда главнейшие системы организма функционируют с максимальной ин­тенсивностью (у человека выявлено около 500 функций и процессов, подчиняющихся циркадным ритмам).

Сезонные циклы: у больных псориазом заболевание обостряется зимой, а как ле­том псориатрические бляшки либо уменьшаются в размерах, либо вообще исчезают.

Насильственная смена биоритмов ведёт к потере адаптации к условиям внешней среды.

Пример. При переводе часов на летнее время сильно страдают дети. И дело не только в том, что они становятся вялыми, раздражительными и сонливыми. Опаснее то, что увеличивается вероятность пробуждения ребенка в фазе быстрого сна.

Если будить мышей в фазе быстрого сна, то через 20 дней эксперимента они умира­ют, хотя продолжительность сна была достаточной. Если такой эксперимент провести со взрослыми людьми, то у них наступают психические расстройства.

 

ЛЕКЦИЯ 18 Биологический вид. Популяция. Процесс видообразования.

 

1. Политипическая концепция биологического вида. Вид как генетически изолированная система.

Согласно политипической концепции биологический вид имеет критерии:

1. Генетический критерий. Каждый вид характеризуется спецификой генофонда. Генофонд - совокупность генов организмов вида или совокупность генотипов орга­низмов вида. Специфика означает, что в генофонде вида имеется определенный со­став генов и определенная частота генов. Этот критерий включает и кариотип вида. Виды - это генетически изолированные системы, так как обмен генов между разны­ми видами невозможен, поскольку имеет место репродуктивная изоляция, заклю­чающаяся в не скрещиваемости особей данного вида с представителями других ви­дов. Если же происходит межвидовое скрещивание, то потомство, как правило, не­жизнеспособно или бесплодно. Также выделяют генетическую устойчивость в при­родных условиях, приводящую к независимости эволюционной судьбы.

2. Морфологический критерий включает особенности внешнего и внутреннего строения организмов вида.

3. Физиологический критерий рассматривает сходство процессов жизнедеятельно­сти у особей данного вида и, прежде всего сходство в размножении. Биохимический критерий учитывает особенности макромолекул белков у особей вида.

4. Географический критерий определяется ареалом вида.

5. Экологический критерий. Каждый вид занимает в природе определенную эколо­гическую нишу, то есть свое место в цепях питания в структуре биогеоценоза.

Вид - совокупность особей представляющих целостную систему, имеющую гене­тические, морфологические, физиологические, биохимические, географические и экологические критерии, свободно скрещивающихся и дающих плодовитое потом­ство.

2. Популяционная структура вида. Популяция: экологические и генетические характеристики.

Наименьшей единицей вида является популяция. Популяция – это совокупность особей одного вида длительно населяющая определенную часть ареала вида, относитель­но изолированная от подобных групп и способная к эволюции.

Экологически популяции характеризуется:

■ ареалом (занимаемой территорией)

■ природными условиями

■ численностью особей

■ возрастным и половым составом

■ степенью подвижности особей.

Численность особей в популяции зависит от следующих факторов:

- деятельности человека

- экологической обстановки

- возраста, при котором достигается половая зрелость

- интенсивности размножения

- продолжительности жизни особей

Генетически популяция характеризуется генофондом популяции (аллелофондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Генофонд популяции отличается:

1. генетическим разнообразием особей (мутации и комбинации)

2. генетическим единством (благодаря панмиксии источником генов для геноти­пов последующих поколений является весь генофонд популяции).

3. Механизмы формирования генофонда популяции. Правило Харди-Вайнберга.




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 521; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.104 сек.