Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема. Вычисление неопределенных интегралов




Практическое занятие №8

Подведение итогов работы на занятии. Работу можно закончить дома.

 

 

Цель:

-обобщить и систематизировать: понятие интеграла, таблицу интегралов, методы вычисления интегралов

- получить практический навык нахождения интегралов путем непосредственного интегрирования, методом замены переменной, методом интегрирования по частям

Ход занятия

 

Неопределённый интеграл и таблица неопределённых интегралов

Определение Пусть -- функция, заданная на объединении интервалов вещественной оси. Набор всех первообразных для называется неопределённым интегралом от и обозначается . Операция нахождения неопределённого интеграла по заданной функции называется интегрированием этой функции; найти неопределённый интеграл означает проинтегрировать данную функцию. Функция , записанная после знака интеграла (или, как часто говорят, под знаком интеграла), называется подынтегральной функцией.

Согласно доказанным выше теоремам о виде первообразных, неопределённый интеграл от функции состоит из функций вида , где -- какая-либо фиксированная первообразная для , а -- величина, постоянная на каждом из непересекающихся интервалов, на которых задана функция . Поэтому можно написать такую формулу:

(Точнее было бы , но фигурные скобки, обозначающие множество всех функций вида , писать в данной ситуации не принято.)

Итак, для того чтобы доказать равенство , достаточно проверить, что -- первообразная для , то есть что .

 

  .   .
  .   .
  ().   .
  .   .
  ; .   .
  .  
  .   .
  .   .
  .   .
  .   ; .

 

Интегрирование по частям.

Интегрирование по частям - приём, который применяется почти так же часто, как и замена переменной. Пусть u(x) и v(x) - функции, имеющие непрерывные частные производные. Тогда по формуле дифференцирования произведения d(uv) = u∙dv + v∙du . Находим неопределённые интегралы для обеих частей этого равенства (при этом ):
.
Эта формула и называется формулой интегрирования по частям. Часто ее записывают в производных (dv = v’∙dx, du = u’∙dx):

.


Примеры:
. .
Формула интегрирования по частям может применяться неоднократно. При наличии небольшого опыта в простых интегралах нет необходимости выписывать промежуточные выкладки (u = …, dv = …), можно сразу применять формулу, представив интеграл в виде : .

Приведённые примеры показывают, для каких функций надо применять (или попытаться применить) формулу интегрирования по частям:
Интегралы вида , , , где Pn(x) - многочлен n-ой степени. Так, для имеем , , и . В результате мы получили интеграл того же типа с многочленом степени на единицу меньше. После n-кратного применения формулы степень многочлена уменьшится до нуля, т.е. многочлен превратится в постоянную, и интеграл сведётся к табличному.
Интегралы , где - трансцендентная функция, имеющая дробно-рациональную или дробно-иррациональную производную (ln x, arctg x, arcctg x, arcsin x, arcos x). В этом случае имеет смысл взять u = f(x), dv = Pn(x)dx, для того, чтобы в интеграле участвовала не f(x), а её производная. Пример: .

Замена переменной в неопределённом интеграле
(интегрирование подстановкой).

Пусть . Тогда . Здесь t(x) - дифференцируемая монотонная функция.
При решении задач замену переменной можно выполнить двумя способами.
1. Если в подынтегральной функции удаётся сразу заметить оба сомножителя, и f(t(x)), и , то замена переменной осуществляется подведением множителя под знак дифференциала: , и задача сводится к вычислению интеграла . Например, (задача сведена к вычислению , где t = cos x) (аналогично находится интеграл от ); (задача сведена к вычислению , где t = sin x) . В более сложных задачах операция подведения под знак дифференциала может выполняться несколько раз: (самое неприятное в подынтегральной функции - пятая степень арккотангенса под знаком экспоненты; если дальше не найдётся дифференциал этой функции, то интеграл, возможно, взять вообще не удастся; в то же время следующий множитель (arcctg4 x2) - производная (с точностью до постоянного множителя) степенной функции; затем следуют производные (опять с точностью до постоянных множителей) функций arcctg x2 и x2 по своим аргументам)

.

2. Замену переменной можно осуществлять формальным сведением подынтегрального выражения к новой переменной. Так, в имеет смысл перейти к переменной (сделать подстановку) t = sin x. Выражаем все множители подынтегрального выражения через переменную t: ; в результате (возвращаемся к исходной переменной) . Другие примеры:
. Подынтегральная функция содержит два множителя, ни один из которых не является производной другого, поэтому подводить их под знак дифференциала бесполезно. Попытаемся ввести новую переменную, такую, чтобы корни извлеклись: = . Рассмотрим (интеграл №19 из табл.). Здесь подынтегральная функция состоит из единственного множителя; можно опять попытаться сделать такую замену переменной, чтобы корень извлёкся. Структура подкоренного выражения подсказывает эту замену: (или , ): . Интеграл свёлся к интегралу от квадрата косинуса. При интегрировании чётных степеней синуса и косинуса часто применяются формулы, выражающие и через косинус двойного угла: . Поэтому
.
Примеры: 1.

 

.

2.

.

 

 

 

Вариант 1. Вычислить интегралы:

непосредственным интегрированием 1-3

методом замены переменной 4-6

Вариант 2. Вычислить интегралы:

непосредственным интегрированием 1-3

методом замены переменной 4-6

Вариант 3. Вычислить интегралы:

непосредственным интегрированием 1-3

методом замены переменной 4-6

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 1684; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.