Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Прямоточный термоядерный двигатель




Ядерная ракета

 

Ученые рассматривают также возможность использования ядерной энергии для межзвездных перелетов. Еще в 1953 г. Комиссия по атомной энергии США начала серьезные разработки ракет с атомными реакторами, начало которым было положено проектом Rover. В 1950-е и 1960-е гг. эксперименты с ядерными ракетами заканчивались в основном неудачно. Ядерные двигатели вели себя нестабильно и вообще оказывались слишком сложными для тогдашних систем управления. Кроме того, несложно показать, что энергетический выход обычного атомного реактора деления совершенно недостаточен для межзвездного космического аппарата. Средний промышленный атомный реактор производит примерно 1000 МВт энергии, а этого недостаточно, чтобы добраться до звезд.

Однако еще в 1950-е гг. ученые предложили использовать для межзвездных аппаратов атомные и водородные бомбы, а не реакторы. В проекте «Орион», к примеру, предполагалось разгонять ракету взрывными волнами от атомных бомб. Звездолет должен был сбрасывать позади себя серию атомных бомб, взрывы которых порождали бы мощные вспышки рентгеновского излучения. Ударная волна от этих взрывов должна была разгонять звездолет.

В 1959 г. физики из General Atomics оценили, что продвинутая версия «Ориона» диаметром 400 м должна весить 8 млн т, а энергию ей должна обеспечивать 1000 водородных бомб.

Горячим сторонником проекта «Орион» был физик Фримен Дайсон. «Для меня „Орион“ означал доступность всей Солнечной системы для распространения жизни. Он мог изменить ход истории, — говорит Дайсон. Кроме того, это был бы удобный способ избавиться от атомных бомб. — За один полет мы избавились бы от 2000 бомб».

Концом проекта «Орион», однако, стал заключенный в 1963 г. Договор об ограничении ядерных испытаний, запретивший наземные взрывы. Без испытаний невозможно было довести конструкцию «Ориона» до ума и проект закрыли.

 

 

Еще один проект ядерной ракеты выдвинул в 1960 г. Роберт Буссард (Robert W. Bussard); он предложил снабдить ракету термоядерным двигателем, похожим на обычный авиационный реактивный двигатель. Вообще, прямоточный двигатель захватывает воздух по ходу полета и уже внутри смешивает его с топливом. Затем топливно-воздушная смесь поджигается, и происходит химический взрыв, который создает движущую силу. Буссард предложил применить тот же принцип к термоядерному двигателю. Вместо того чтобы забирать воздух из атмосферы, как делает авиационный двигатель, прямоточный термоядерный двигатель будет собирать в межзвездном пространстве имеющийся там водород. Собранный газ предполагается сжать и нагреть при помощи электрических и магнитных полей до начала термоядерной реакции синтеза гелия, при которой выделится громадное количество энергии. Возникнет взрыв, и ракета получит толчок. А поскольку запасы водорода в межзвездном пространстве неисчерпаемы, прямоточный ядерный двигатель сможет, предположительно, работать вечно.

Конструкция корабля с прямоточным термоядерным двигателем напоминает рожок для мороженого. Воронка захватывает газообразный водород, который затем поступает в двигатель, нагревается и вступает в реакцию синтеза с другими атомами водорода. Буссард рассчитал, что прямоточный ядерный двигатель весом около 1000 т способен поддерживать постоянное ускорение около 10 м/с2 (т. е. примерно равное ускорению свободного падения на Земле); в этом случае уже через год звездолет разгонится примерно до 77 % скорости света. Поскольку прямоточный ядерный двигатель не ограничен запасами топлива, звездолет с таким двигателем теоретически мог бы выйти за пределы нашей Галактики и всего за 23 года по корабельным часам добраться до Туманности Андромеды, расположенной на расстоянии в 2 млн световых лет от нас. (Согласно теории относительности Эйнштейна время в ускоряющемся корабле замедляется, так что астронавты в звездолете постареют всего на 23 года, даже если на Земле за это время пройдут миллионы лет.)

Однако и здесь существуют серьезные проблемы. Во-первых, в межзвездной среде встречаются в основном отдельные протоны, так что термоядерный двигатель должен будет жечь чистый водород, хотя эта реакция дает не так уж много энергии. (Водородный синтез может идти разными путями. В настоящее время на Земле ученые предпочитают вариант влияния дейтерия и трития, при котором выделяется значительно больше энергии. Однако в межзвездной среде водород находится в виде отдельных протонов, поэтому в прямоточных ядерных двигателях можно использовать только протон-протонную реакцию синтеза, при которой энергии выделяется гораздо меньше, чем при дейтерий-тритиевой реакции.) Однако Буссард показал, что если модифицировать топливную смесь добавлением некоторого количества углерода, то углерод, работая как катализатор, позволит получить громадное количество энергии, вполне достаточное для звездного корабля.

Во-вторых, воронка впереди звездолета, чтобы собирать достаточно водорода, должна быть огромной — диаметром порядка 160 км, так что собирать ее придется в космосе.

Существует и еще одна нерешенная проблема. В 1985 г. инженеры Роберт Зубрин (Robert Zubrin) и Дейна Эндрюс (Dana Andrews) показали, что сопротивление среды не даст звездолету с прямоточным термоядерным двигателем разогнаться до околосветовых скоростей. Сопротивление это обусловлено движением корабля и воронки в поле атомов водорода. Однако их расчеты основаны на некоторых предположениях, которые в будущем могут оказаться неприменимыми к кораблям с прямоточными двигателями.

В настоящее время, пока у нас нет четких представлений о процессе протон-протонного синтеза (а также о сопротивлении ионов водорода в межзвездной среде), перспективы прямоточного ядерного двигателя остаются неопределенными. Но если эти инженерные проблемы решаемы, такая конструкция наверняка окажется одной из лучших.

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.