Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Повышение прочностных свойств термической обработкой




Получение оптимальной микроструктуры.

Как известно, структура титановых сплавов формируется в процессе горячей деформации и в отличие от стали тип структуры не претерпевает существенных изменений в процессе термической обработки. В связи c этим особое внимание должно быть уделено схемам и режимам деформации, обеспечивающим получение требуемой структуры в полуфабрикатах.

Установлено, что микроструктуры равноосного типа (I тип) и типа корзиночного плетения (II тип) имеют неоспоримое преимущество перед структурой игольчатого типа (III тип) по термической стабильности и усталостной прочности.

Однако по характеристикам жаропрочности микроструктура I типа уступает микроструктурам II и III типа.

Поэтому в зависимости от назначения полуфабриката оговаривается тот или иной тип структуры, обеспечивающий оптимальное сочетание всего комплекса свойств для требуемого ресурса работы деталей.

Поскольку двухфазные (α+β)-титановые сплавы могут упрочняться термической обработкой, имеется возможность дополнительно повысить их прочность.

Оптимальными режимами упрочняющей термической обработки с учетом ресурса 2000 ч являются:

для сплава ВТ3-1 закалка в воду с температуры 850 – 880° С и последующее старение при 550° С в течение 5 ч с охлаждением на воздухе;

для сплава ВТ8 – закалка в воду с температуры 920° С и последующее старение при 550° С в течение 6 ч с охлаждением на воздухе;

для сплава ВТ9 закалка в воду с температуры 925° С и последующее старение при 570° С в течение 2 ч и охлаждение на воздухе.

Были проведены исследования по влиянию упрочняющей термической обработки на механические свойства и структуру сплава ВТ3-1 при температурах 300, 400, 450° С для сплава ВТ8 за 100, 500 и 2000 ч, а также на термическую стабильность после выдержки до 2000 ч.

Эффект упрочнения от термической обработки при кратковременных испытаниях сплава ВТ3-1 сохраняется до 500° С и составляет 25 – 30% по сравнению с изотермическим отжигом, а при 600° С предел прочности закаленного и состаренного материала равен пределу прочности отожженного материала.

Применение упрочняющего режима термической обработки также повышает и пределы длительной прочности за 100 ч на 30% при 300° С, на 25% при 400° С и 15% при 450° С.

С увеличением ресурса от 100 до 2000 ч длительная прочность при 300° С почти не изменяется как после изотермического отжига, так и после закалки и старения. При 400° С закаленный и состаренный материал разупрочняется в большей степени, чем отожженный. Однако абсолютное значение длительной прочности за 2000 ч у закаленных и состаренных образцов выше, чем у отожженных. Наиболее резко снижается длительная прочность при 450° С, и при испытании в течение 2000 ч преимуществ от термического упрочнения не остается.

Аналогичная картина наблюдается и при испытании сплава на ползучесть. После упрочняющей термической обработки предел ползучести при 300° С выше на 30% и при 400° С – на 20%, а при 450° С даже ниже, чем у отожженного материала.

Также повышается выносливость гладких образцов при 20 и 400° С на 15 – 20%. При этом после закалки и старения отмечена большая вибрационная чувствительность к надрезу.

После длительной выдержки (до 30000 ч) при 400° С и испытания образцов при 20° С пластические свойства сплава в отожженном состоянии сохраняются на уровне исходного материала. У сплава, подвергнутого упрочняющей термической обработке, несколько снижаются поперечное сужение и ударная вязкость, однако абсолютное значение после 30000-ч выдержки остаются достаточно высокими. С повышением температуры выдержки до 450° С снижается пластичность сплава в упрочненном состоянии после 20000 ч выдержки, поперечное сужение падает с 25 до 15%. Образцы, выдержанные 30000 ч при 400° С и испытанные при той же температуре, имеют более высокие значения прочности по сравнению с исходным состоянием (до нагрева) при сохранении пластичности.

С помощью рентгеноструктурного фазового анализа и электронноструктурного микроисследования установлено, что упрочнение при термической обработке двухфазных (α+β)-сплавов достигается за счет образования при закалке метастабильных β-, α´´- и α´-фаз и распада их при последующем старении с выделением дисперсных частиц α- и β- фаз.

Установлено весьма интересное явление существенного повышения длительной прочности сплава ВТ3-1 после предварительной выдержки образцов при меньших нагрузках. Так, при напряжении 80· Па и температуре 400° С образцы разрушаются уже при нагружении, а после предварительной 1500-ч выдержки при 400° С под напряжением 73· Па они выдерживают напряжение 80· Па в течении 2800 ч. Это создает предпосылки для разработки специального режима термической обработки под напряжением для повышения длительной прочности.




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 425; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.