Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Шпоночные соединения




Шпоночные соединения применяются для соединения втулок, шкивов, муфт, зубчатых колес и других деталей машин с валами.

Достоинства:

-простота и надежность конструкции;

-легкость сборки и разборки;

-невысокая стоимость.

Недостаток:

-снижение нагрузочной способности сопрягаемых деталей из – за ослабления их поперечных сечений шпоночными пазами.

Существует три типа шпоночных соединений:

а) свободное (подвижное);

б) нормальное (неподвижное разъемное);

в) плотное (неподвижное неразъемное).

Для получения различных посадок призматических шпонок установлены поля допусков на ширину b шпонок, пазов валов и втулок (ГОСТ 23360-78). Ширина шпонки определяет прочность всего соединения и является поэтому основным параметром.

 

Шпонка - деталь, устанавливаемая в разъем двух соединяемых деталей и препятствующая их взаимному перемещению. Применяется чаще всего для передачи вращающего момента. По характеру работы различают ненапряженные (призматические и сегментные) и напряженные (клиновые и тангенциальные) шпонки, а также неподвижные и подвижные шпоночные соединения. Виды шпонок представлены на рис.13.2.

 

рис.13.2. Виды шпонок.

 

Для обеспечения посадок призматических шпонок предусмотрены поля допусков: на ширину паза вала - Н9, N9 и Р9; на ширину паза втулок - D10, Js9 и Р9; на высоту шпонки 2-6 мм - h9 и свыше 6 мм – h11; на длину шпонки h14 и на длину паза - H15.

Сегментные шпонки по ГОСТ 24071-80 применяют при необходимости частого демонтажа узла. Клиновые шпонки по ГОСТ 24068-80 представляют собой самотормозящийся клин с уклоном 1: 100; они крепят ступицу также и в осевом направлении, из-за возникающих при эксплуатации перекосов эти шпонки применяют только для тихоходных, неответственных деталей. Тангенциальные шпонки по применяют при значительных динамических нагрузках.

Технические требования к шпоночным соединениям предусматривают:

-правильность формы и размеров шпонки и пазов вала и ступицы по всей длине;

-отсутствие заусенцев и забоин на рабочих поверхностях шпонки и пазов;

-параллельность оси шпонки и осей вала или отверстия ступицы;

-симметричность боковых поверхностей пазов вала и ступицы относительно диаметральной плоскости;

-тщательную пригонку рабочих поверхностей шпонки и пазов; наличие зазоров по высоте для призматических и сегментных шпонок и по ширине для клиновых шпонок.

 

 

Лекция № 14 «Допуски углов. Взаимозаменяемость конических соединений».

Основными свойствами конических соединений являются самоцентрируемость деталей, регулируемость характера сопряжения и простота обеспечения герметичности. Герметичность достигается индивидуальной притиркой деталей по коническим поверхностям, вследствие чего герметичные детали (запорные краны, клапаны четырехтактных двигателей, запорные иглы карбюраторов и т.п.) функционально не взаимозаменяемы.

Обеспечение высокой концентричности при неподвижных соединениях определяет посадку на конус различных ответственных быстровращающихся деталей: маховиков двигателей внутреннего сгорания, вращающихся частей центрифуг, сепараторов, режущих инструментов и т. п. Возможность регулировать посадку относительным осевым смещением деталей используется в ряде конических подшипников, для регулирования зазоров в призматических направляющих станков, для закрепления штампов на молотах и т.д.

Кроме конических соединений, конусы используют в приборостроении и как отдельные элементы: контрольные и регулирующие конусы в различных фрикционных механизмах для изменения передаточного отношения, конусы различных решающих логарифмических и множительных механизмов и т.д.

Различные углы, применяемые при конструировании и изготовлении деталей машин и приборов, инструмента, приспособлений и др. можно разделить на три основные группы.

 

Углы общего назначения, размеры которых во многих случаях являются независимыми, так как не связаны расчетными зависимостями с другими принятыми линейными или угловыми параметрами (фаски, скосы, наклонные поверхности, штамповочные и литейные уклоны).

 

Углы специального назначения имеют ограниченное применение, так как используются в стандартизованных специальных деталях (например, конусы Морзе, инструментальные конусы, конические трубные резьбы и калибры, шпиндели и оправки станков и т.д.).

 

Специальные углы, размеры которых связаны расчетными зависимостями с другими принятыми линейными и угловыми размерами. Например, угол подъема спирали червячной фрезы зависит от диаметра фрезы и шага спирали, т. е. является производным размером.

Углы общего назначения имеют наибольшее распространение и их размеры определены ГОСТ 8908-81. Этот стандарт устанавливает три ряда нормальных углов, представленных как в радиан-ной, так и в градусной системах.

 

Первый ряд - это углы величиной 0°; 5°; 15°; 20°; 30°; 45°; 60°; 90° и 120°; второй ряд включает в себя углы первого ряда и в дополнение к ним углы 0°30'; Г; 2°; 3°; 4°; 6°; 7°; 8°; 10°; 40° и 75°; третий ряд, включающий в себя углы первого и второго рядов с большим количеством дополнительных углов. При выборе значений углов первый ряд следует предпочитать второму ряду, а второй - третьему.

 

Коническим соединением называют соединение наружного и внутреннего конусов, имеющих одинаковые номинальные углы конуса или одинаковые номинальные конусности. Конические соединения по сравнению с цилиндрическими имеют ряд преимуществ и в некоторых случаях являются незаменимыми. Они могут быть подвижными, неподвижными и плотными.

 

Конические сопряжения используют для обеспечения сопряжений, при которых требуется частая разборка и сборка при хорошем центрировании сопрягаемых деталей. Типичным случаем наиболее частого применения конусов является установка режущего инструмента в шпинделе металлорежущих станков.

 

Подвижные конические соединения служат для обеспечения относительного вращения или зазора между деталями. Эти соединения характеризуются точным центрированием, возможностью компенсации износа деталей за счет перемещения их вдоль оси, например, в конических подшипниках станков, в регулирующих устройствах. Подвижные конические соединения допускают регулирование зазора относительным смещением деталей вдоль оси и тем самым обеспечивают высокую точность вращения и длительную эксплуатацию с сохранением заданных свойств. Такие конические опоры вращения находят широкое применение в конструкциях высокоточных машин и приборов.

 

Неподвижные конические соединения (типа посадок с натягом цилиндрических сопряжений) служат для передачи крутящих моментов. Неподвижность создается силой трения между сопрягаемыми поверхностями. Силу трения регулируют изменением натяга, который обеспечивают затяжкой или запрессовкой наружного конуса во внутренний. При передаче больших нагрузок при малых натягах, а также при вибрациях применяют дополнительное крепление шпонками в конических сочинениях. В неподвижных конических соединениях необходимый натяг издается осевой силой и при этом происходит самоцентрирование элементов конического сопряжения. Такие соединения легко разбираются и всегда имеется возможность регулирования натяга.

 

Плотные (или герметичные) конические соединения применяют в кранах, штуцерах, для посадки клапана в седло в газораспределительных устройствах, в пробках флаконов духов и т.п. Плотное соединение обеспечивается притиркой сопрягаемых деталей и обычно не взаимозаменяемы.

 

Конические соединения характеризуются большим диаметром D, малым диаметром d, длиной L конического соединения и базорасстоянием соединения Zp (расстояние между принятыми базами конусов).

 

Базорасстояние соединения zp определяет относительное осевое расположение конических деталей.

 

14.1. Для конусов различают следующие виды допусков:

 

· TD - допуск диаметра конуса в любом сечении; он равен разности предельных диаметров конуса в одном и том же поперечном сечении (рис.14.1.);

 

· TDs - допуск диаметра конуса в заданном сечении;

 

· AT - допуск угла конуса;

 

· TFR - допуск круглости конуса (допуск формы конуса);

 

· TFL - допуск прямолинейности образующей (допуск формы).

 

Допуски конусов нормируют двумя способами:

Первый способ заключается в совместном нормировании всех видов допусков, т.е. допуском TD диаметра конуса в любом сечении. Допуск TD определяет поле допуска конуса, ограниченное двумя предельными конусами, между которыми должны находиться все точки реальной поверхности конуса. Он ограничивает не только отклонения диаметра, но и отклонения угла и формы конуса, если эти отклонения не ограничены меньшими допусками (рис. 14.1.).

Второй способ представляет собой раздельное нормирование каждого вида допуска: допуска TDs диаметра конуса в заданном сечении, допуска AT угла конуса, допуска TFR круглости и допуска TFL прямолинейности образующей конуса.

 

Допуски AT угла конуса и допуски формы конуса TFR и TFL назначают в том случае, если отклонения угла конуса ограничены более узкими пределами, чем это возможно при более полном использовании допуска TD.

 

рис. 14.1.. Поле допуска диаметра конуса в любом сечении.

 

Конус наружный и внутренний характеризуется следующими параметрами:

-диаметром большого основания (D);

-диаметром малого основания (d);

-углом конуса (a);

-углом уклона (a2);

-длиной конуса (L).

Угол уклона a2 связан с размерами D, d и L следующим соотношением:

/2или /2 =С, где 2tg a2 = C – конусность; tga2 = - уклон i.

Для облегчения достижения взаимозаменяемости установлены ряды нормальных конусностей ГОСТ 8593-81

ГОСТ 8908-81 устанавливает 17 степеней точности допусков углов:

1, 2, ¼, 17.

 

Для каждой степени точности установлены:

1. Допуск угла АТa, выраженный в угловых единицах (приведены в ГОСТ 8908-81)

2. Допуск угла АТh, выраженный отрезком на перпендикуляре к стороне угла, проведенном на расстоянии L1 от вершины этого угла. Практически этот отрезок равен длине дуги с радиусом L1, стягивающей угол .

3. Допуск угла конуса АТD, выраженный допуском на разность диаметров в двух нормальных к оси конуса сечениях на расстоянии L.

Допуск АТh назначают на конусы, имеющие С > 1: 3, в зависимости от L1:

АТh = АТa ×L1×10 –3; где АТh – в мкм, АТa - в мкрад, L1 – в мм

Для конусов с С £ 1: 3 принимают L1 = L и назначают допуск АТD. Причем

ATD» ATh.

Допуски и посадки для конических соединений устанавливает ГОСТ 25307-82

Основная плоскость – это плоскость поперечного сечения конуса, в которой задают его номинальный Æ.

Базовая плоскость – это плоскость, по которой определяют осевое положение основной плоскости.

Базорасстояние – это расстояние между базовой и основной плоскостью между базовыми плоскостями.

 

В табл.14.1. отображены четыре типа конических посадок:

 

Табл.14.1.

Описание посадки
первый тип посадки с фиксацией путем совмещения конструктивных элементов сопрягаемых конусов при этом могут быть получены посадки любого характера
второй тип посадки с фиксацией по заданному осевому расстоянию zpf между базовыми плоскостями сопрягаемых конусов при этом могут быть получены посадки любого характера
третий тип осадки с фиксацией по заданному осевому смещению Ea сопрягаемых конусов от их начального положения, за которое принимается положение в момент фактического соприкосновения данной пары конусов.. Осевые отклонения конусов отсчитывают от основной плоскости. Они положительны, если направлены от вершины конуса, и отрицательны, если направлены к вершине конуса. При смещении в осевом направлении внутреннего конуса влево получают посадки с зазором, а при смещении вправо – посадки с натягом.
четвертый тип посадки с фиксацией по заданному усилию запрессовки Fs, прилагаемому в начальном положении конусов.При этом способе могут быть получены только посадки с натягом. Чем больше усилие запрессовки Fs , тем больше натяг в соединении.

 

 

Полем допуска конуса называется область в пространстве, внутри которой должны находиться все точки реальной поверхности конуса (рис. 14.1.).

 

ГОСТ 25307 устанавливает следующие основные отклонения: для наружных конусов – d, e, f, g,h, js, k, m, n, p, r, s, t, u, x, z; для внутренних конусов - H, Js, N. Перечисленные основные отклонения образуют поля допусков в сочетании с допусками 4 –12 квалитетов. Основные отклонения h, js, H, Js образуют поля допусков в сочетании с допусками всех квалитетов, установленных ГОСТ 25346.

 

.

Лекция № 15 «Сертификация. Основные понятия, цели и объекты.»

Сертификация — методическая и практическая деятельность специально уполномоченного органа власти, направленная на определение, проверку и документальное подтверждение действующих квалификационных требований к персоналу, процессам, процедурам или изделиям.

Сертификация продукции — процедура подтверждения соответствия, посредством которой независимая от изготовителя и потребителя организация удостоверяет в письменной форме, что продукция соответствует установленным требованиям.

Сертификат соответствия — документ, подтверждающий соответствие сертифицированной продукции установленным требованиям.

Система сертификации — система, осуществляющая сертификацию и управление процессом по собственным установленным правилам.

Знак соответствия — зарегистрированный в установленном порядке знак, который подтверждает соответствие маркированной им продукции установленным требованиям.

Измерение — совокупность операций по нахождению значения физической величины с помощью специальных технических средств с учетом экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Испытание — совокупность операций, направленных на получение количественных или качественных характеристик продукции и оценку возможности выполнять необходимые функции в заданных условиях; технический процесс по определению характеристик данной продукции в соответствии с установленными требованиями.

Контроль — совокупность действий по установлению соответствия характеристик продукции заданным в нормативных документах требованиям. По результатам испытаний составляется протокол испытаний, на основании которого и осуществляется контроль.

 

15.1.Цели сертификации:

– содействие потребителям в компетентном выборе продукции;

– защита потребителя от недобросовестной продукции;

– контроль безопасности продукции для окружающей среды, здоровья, иму щества;

– подтверждение показателей качества продукции (услуги, процесса), заявленных изготовителем (исполнителем);

– создание условий для деятельности организации и предпринимателей на едином товарном рынке России, а также для участия в международном экономическом, научно- техническом сотрудничестве и международной торговле.

 




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 4011; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.