Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие сведения о гидравлических потерях




Гидравлические сопротивления

 

Движение вязкой жидкости сопровождается потерями энергии.

Потери удельной энергии (напора), или гидравлические потери, зависят от формы, размеров русла, скорости течения и вязкости жидкости.

В большинстве случаев гидравлические потери пропорциональны скорости течения жидкости во второй степени или динамическому напору и определяются из выражения

(4.1)

где - коэффициент потерь; V- средняя скорость в сечении.

Потери в единицах давления

. (4.2)

Гидравлические потери энергии обычно разделяют на местные потери и потери на трение по длине

. (4.3)

 

Местные потери энергии обусловлены так называемыми местными гидравлическими сопротивлениями, т.е. местными изменениями формы и размеров русла, вызывающими деформацию потока. При протекании жидкости через местные сопротивления изменяется ее скорость и возникают вихри.

Примером местных сопротивлений может служить задвижка (рис.4.1).

Рисунок 4.1 – Местное гидравлическое сопротивление: а) задвижка

 

Местные потери напора определяются по формуле Вейсбаха

, (4.4)

где V-средняя скорость в трубе; -коэффициент местного сопротивления.

Потери на трение по длине -это потери энергии, которые возникают в прямых трубах постоянного сечения и возрастают прямо пропорционально длине трубы (рис.4.2).

Рассматриваемые потери обусловлены внутренним трением жидкости в трубах. Потери напора при трении определяются по формуле Дарси-Вейсбаха

, (4.5)

где λ – коэффициент гидравлического трения по длине или коэффициент Дарси; l – длина трубопровода; d –его диаметр; V – средняя скорость течения жидкости.

 

Рисунок 4.2 – Потери напора по длине трубы

Для ламинарного режима движения жидкости в круглой трубе коэффициент определяется по теоретической формуле

, (4.6)

где число Рейнольдса.

При турбулентном режиме коэффициент зависит от числа Рейнольдса Re и относительной шероховатости ( -эквивалентная шероховатость) и определяется по эмпирическим формулам.

В области гидравлически гладких труб 4000<Re< , т.е. прималых скоростях и числах Рейнольдса, коэффициент Дарси зависит только от числа Рейнольдса, и его определяют по формуле Блазиуса

. (4.7)

В переходной области () на коэффициент Дарси влияют шереховатость и число Рейнольдса. В этой области для вычислений используют формулу Альтшуля

. (4.8)

В квадратичной области сопротивления (области гидравлически шероховатых труб) коэффициент может быть найден по формуле Шифринсона

. (4.9)

 




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 487; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.