Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Парасимпатическая нервная система 2 страница




Псевдогипопаратиреоз (см. также гл. 336). Генетический де­фект, затрагивающий Гс-компонент аденилатциклазы, служит молекулярной ос­новой для развития псевдогипопаратиреоза типа 1 (ПГП-1). Это редкое наслед­ственное заболевание характеризуется гипокальциемией и гиперфосфатемией, повышенным уровнем содержания гормона паращитовидных желез в сыворотке крови (ГПЖ) и резистентностью к метаболическим эффектам вводимого экзо­генного ГПЖ.

ГПЖ регулирует гомеостаз кальция, по меньшей мере частично, посредством стимуляции аденилатциклазы в почках и костях. Введение ГПЖ здоровым людям (и больным, страдающим идиопатическим или развившимся в результате хирургического вмешательства гипопаратиреозом) вызывает резкое увеличение экскреции циклического АМФ в мочу. В противоположность этому введение ГПЖ вызывает лишь небольшое увеличение (или вообще не изменяет) кон­центрации циклического АМФ в моче у больных, страдающих ПГП-1. Перво­начально обнаружение этого факта породило предположение о том. что причиной ПГП-1 служит дефект в рецепторах ГПЖ, снижающий их способность стиму­лировать синтез циклического АМФ.

Однако влиянием дефекта, ограниченного только рецепторами ГПЖ, нельзя объяснить тот факт, что многие страдающие ПГП-1 больные также частично резистентны к действию других гормонов, включая тнреотропный (ТТГ), анти­диуретический гормоны, глюкагон и гонадотропины. Действительно, некоторые страдающие ПГП-1 больные нуждаются в заместительной терапии по поводу симптоматического гипотиреоза вследствие резистентности щитовидной железы к действию ТТГ. Резистентность к действию других гормонов по большей части клинически не проявляется и ее можно выявить только с помощью специальных тестов.

То, что циклический АМФ служит для этих гормонов в качестве вторичного медиатора, позволяет предположить, что причиной ПГП-1 является дефект, действующий дистальнее гормональных рецепторов и изменяющий некий компо­нент, общий для всех опосредуемых циклическим АМФ реакций. Для многих людей, страдающих ПГП-1, такой компонент—Гс-белок, активность которого снижена в эритроцитах, тромбоцитах и фибробластах кожи у большинства больных приблизительно на 50%. У одного из больных было выявлено снижение активности Гс в почках, и, вероятно, аналогичные процессы наблюдались и в других клетках, являющихся эндокринными мишенями, включая кости, щито­видную железу, печень и т. д.

Возникает вопрос, если дефектность Гс — всеобщее явление при ПГП-1, то почему большинство из важных клинических последствий этого связано с резистентностью к единственному гормону — ГПЖ? Хотя на этот вопрос нельзя от­ветить определенно, вероятно, что большинство опосредуемых циклическим АМФ реакций на действие гормонов поддерживаются, несмотря на частичную неполно­ценность Гс, рядом компенсаторных механизмов, включая увеличение концентра­ций циркулирующих в крови стимулирующих гормонов. Однако наличие повы­шенной концентрации циркулирующего в крови ГПЖ оказывается недостаточным фактором для поддержания нормального гомеостаза кальция при ПГП-1, пред­положительно вследствие того, что нормальное функционирование ГПЖ решаю­щим образом определяется условием нормальной активности Гс. К счастью, нарушения реактивности ГПЖ можно ликвидировать лечением витамином D, с помощью которого концентрации кальция и фосфора в сыворотке крови вос­станавливаются до нормы.

Холера (см. также гл. 115). Повышение содержания циклического АМФ в клетках слизистой оболочки кишечника вызывает массивную секрецию воды и электролитов, что приводит к развитию холерной диареи. Патогенный Vibrio cholerae продуцирует белковый экзотоксин, способный стимулировать синтез цик­лического АМФ фактически во всех клетках организма. Клинически заболевание ограничивается слизистой оболочкой кишечника, поскольку токсин не абсорби­руется из пищеварительного тракта, таким образом, другие ткани недоступны для токсина, вырабатываемого бактериями, находящимися в кишечнике.

В отличие от процесса стимуляции аденилатциклазы гормонами действие холерного токсина начинается постепенно и не прекращается немедленно после введения токсина. Причиной такого различия является то, что холерный токсин действует не посредством обратимого связывания со стимулирующим рецептором, а как фермент, образуя стабильную ковалентную модификацию компонента Гс-белка аденилатциклазы. После связывания токсина с клетками одна из его пептидных субъединиц проникает через клеточную мембрану, где катализирует АДФ-рибозилирование Гс, используя внутриклеточный никотинамидадениндинуклеотид (НАД) в качестве субстрата:

Гс + НАД+ ---токсин---> Гс-АДФ-рибоза + никотинамид + Н+.

АДФ-рибозилиро­вание Гс увеличивает синтез циклического АМФ, по-видимому, путем снижения скорости гидролиза ГТФ в комплексе Гс—ГТФ-С, который синтезирует цикличе­ский АМФ (см. рис. 67-2).

Этот биохимический механизм помогает понять причину развития холерной диареи в результате жизнедеятельности относительно небольшого числа патоген­ных микроорганизмов, а также то, почему болезнь может продолжаться некоторое время и после ликвидации микроорганизмов из кишечника. Первый феномен объясняется тем, что данный токсин является ферментом и поэтому небольшого числа его молекул достаточно для АДФ-рибозилирования значительной части молекул Гс в клетке. Сохраняющийся повышенным уровень синтеза циклического АМФ после выведения токсина (по меньшей мере в экспериментальных иссле­дованиях) коррелирует со стабильностью Гс-АДФ-рибозы. Большинство клеток, по-видимому, 'не содержат ферментов, способных отделить АДФ-рибозу от Гс, и поэтому действие токсина прекратится только тогда, когда молекулы Гс-АДФ-ри­бозы будут замещены заново синтезированными молекулами Гс. Для выздоровле­ния может потребоваться даже замена самих клеток слизистой оболочки. Выясне­ние молекулярной основы действия холерного токсина послужило ценным инстру­ментом обнаружения Гс и определения его характеристик, а также повысило уровень нашего знания биохимической основы действия гормонов.

Коклюш (см. также гл. 109). Молекулярный патогенез коклюша в. брон­хах очень близок к патогенезу холеры в кишечнике. Ни один из этих двух микро­организмов не внедряется в ткани, —оба они вызывают заболевание, вырабаты­вая экзотоксины, изменяющие синтез циклического АМФ в клетках хозяина. Bordetella pertussis секретирует два патогенных экзотоксина: молекулярной ми­шенью одного из них, называемого коклюшевым токсином, является связанный с гуаниннуклеотидом угнетающий белок аденилатциклазы. Другой токсин сам является молекулой аденилатциклазы.

Подобно холерному, коклюшевый токсин катализирует перенос АДФ-рибозы от НАД+ к белку мембраны; в данном случае это белок Ги. АДФ-рибозилированная форма Ги не способна взаимодействовать с Ри (см. рис. 67-2); в результате этого коклюшный токсин предотвращает угнетение аденилатциклазы ингибирующими лигандами, такими как мускариновые, a-адренергические и опиатные агонисты.

Ключевые бронхиальные клетки-мишени для коклюшного токсина и молеку­лярные события, связывающие АДФ-рибозилирование Г„ с симптомами коклюша, в значительной степени неизвестны. Однако реакция АДФ-рибозилирования помогает объяснить одно загадочное явление: лечение коклюшной инфекции антибиотиками в очень незначительной степени уменьшает тяжесть и длитель­ность заболевания; и действительно, симптомы болезни могут сохраняться в те­чение трех и более недель после исчезновения микроорганизмов из трахеобронхиального дерева. АДФ-рибозилирование Ги (подобно АДФ-рибозилированию Гс, описанному выше) трудно обратимо с помощью клеточных ферментов. Вероятно, болезнь не отступит даже в отсутствие поступления дополнительных порций токсина, пока не будут замещены модифицированные белки Ги или клетки, содержащие такие белки.

Второй секретируемый В. pertussis патогенный продукт — аденилатциклазный токсин — остается ферментно инертным до тех пор, пока не внедрится в клетки хозяина. Там он активируется путем связывания с кальмодулином, в ре­зультате чего происходит существенное увеличение содержания циклического АМФ в клетке. В отличие от коклюшевого действие аденилатциклазного токсина быстро исчезает после удаления его источника; клеточные ферменты разрушают бактериальный фермент и концентрация циклического АМФ в клетке быстро возвращается к норме.

Хотя большинство связей между молекулярными действиями этих токсинов и развивающимся в результате этого заболеванием недостаточно ясны, экспери­менты in vitro показывают, что оба токсина могут нарушать функцию нейтрофильных гранулоцитов человека—клеток, играющих основную роль в защите орга­низма от инфекций. Накопление циклического АМФ, вызываемое аденилатциклазным токсином, нарушает способность нейтрофильных гранулоцитов убивать захваченные микроорганизмы. Коклюшный токсин путем АДФ-рибозилирования Ги или Ги-подобных молекул блокирует реакции нейтрофильных гранулоцитов (хемотаксис, высвобождение лизосомальных гидролаз и т. д.) на комплемент и другие факторы хемотоксина. Любой из этих двух эффектов или оба они могут способствовать увеличению чувствительности к легочным инфекциям, вызывае­мым другими микроорганизмами, что является частым осложнением коклюша.

Помимо их роли в качестве инструментов для исследования преобразования гормональных сигналов, знание этих токсинов может принести реальную пользу в практической медицине. Хотя современная практика иммунизации экстрактами целых коклюшевых бактерий эффективно предотвращает инфицирование, сама по себе иммунизация является причиной значительного числа случаев заболева­ния. Возбудители коклюша, специфически неспособные продуцировать любой из двух описанных выше токсинов, делаются безвредными для организма хозяина. В соответствии с этим иммунизация препаратами очищенного токсина должна предотвращать развитие болезни и снизить заболеваемость, вызываемую самой иммунизацией. Результаты предварительных клинических испытаний подкрепляют оба эти прогноза.

Сибирская язва (см. также гл. 98). Кожное инфицирование Bacillus antracis вызывает развитие характерного поражения с областью центрального некроза, окруженной выступающим подкожным отеком. В то время как некроти­ческие поражения, по-видимому, не связаны с участием системы циклического АМФ, «отечным фактором» в организме является аденилатциклаза. Подобно аденилатциклазному токсину коклюша отечный фактор получает доступ к клеткам хозяина, активируется клеточным кальмодулином и увеличивает внутриклеточную концентрацию циклического АМФ. Интересно отметить, что встречаются редкие случаи, когда у больных, в организм которых с пищей попали В. antracis, раз­вилась водянистая диарея, неотличимая от такого же симптома холеры. Диарея в таких случаях, вероятно, является результатом проникновения отечного фактора внутрь клеток слизистой оболочки кишечника, приводящего к увеличению кон­центрации циклического АМФ и секреции соли и воды.

Циклический АМФ в клинической медицине. Большое число гормонов и ме­диаторов действуют путем стимуляции аденилатциклазы, а некоторые фармако­логические антагонисты действуют путем блокирования их связывания со спе­цифическими рецепторами — например, анаприлина с b-адренорецепторами и циметидина с На-гистаминовыми рецепторами. Терапевтическое действие этих веществ зависит от увеличения или уменьшения концентрации циклического АМФ в клетках-мишенях и тканях больных. Кроме этого, метилксантины (кофеин и теофиллин) блокируют фосфодиэстеразы циклических нуклеотидов и могут оказывать некоторые из своих лечебных воздействий (например, расширение бронхов) путем увеличения концентрации циклического АМФ в клетках.

В клинической практике определение содержания циклического АМФ в моче целесообразно при диагностике заболеваний, сопровождающихся нарушением гомеостаза кальция и концентрации ГПЖ. Значительная часть присутствующего в моче циклического АМФ образуется в клетках проксимальных канальцев, реагирующих на циркулирующий в крови ГПЖ. Таким образом, уровень содер­жания циклического АМФ в моче обеспечивает удобное «окно», заглянув в кото­рое можно оценить действие ГПЖ на Почки и которое может отражать повыше­ние концентрации ГПЖ (при гиперпаратиреозе), снижение ее (при гипопаратиреозе) или резистентность конечного органа к действию ГПЖ (при ПГП-1) (см. гл. 336).

Однако в настоящее время реальное значение циклического АМФ для меди­цины заключается в том, что он является инструментом для исследования и по­нимания нормальной и патологической регуляции, а также для разработки новых лекарственных средств. Образцы аденилатциклазы в настоящее время обычно используют для проверки новых веществ на их способность стимулировать или блокировать адренергические, гистаминергические и многие пептидные рецепто­ры. Гормональные рецепторы не являются единственными основными и специфи­ческими точками контроля регуляции, опосредуемой через циклический АМФ; вероятно, что и другие белки (см. рис. 67-1) будут служить мишенями для новых лекарственных средств в будущем.

Прочие вторичные медиаторы. Хотя наиболее хорошо изученным гормональ­ным вторичным медиатором является циклический АМФ, некоторые гормоны действуют посредством увеличения внутриклеточных концентраций других хими­ческих сигнальных веществ, включая ионы кальция и циклической гуанозин-3',5^монофосфат (циклический ГМФ). Например, определенные эффекты a-адренергических и холинергических (мускариновых) веществ, по-видимому, опосредуются повышенными концентрациями кальция в цитоплазме. Клетки многих типов содержат гуанилатциклазу, фосфодиэстеразы циклического ГМФ и белко­вые киназы, которые специфически стимулируются циклическим ГМФ. Тем не менее роль этого вторичного циклического нуклеотида в нормальной и патологи­ческой регуляции не совсем ясна.

 

 

ГЛАВА 68. МЕТАБОЛИТЫ АРАХИДОНОВОЙ КИСЛОТЫ И ИХ РОЛЬ В МЕДИЦИНЕ

 

Р. Поль Роберт сон (R. Paul Robertson)

 

Содержание этой главы сконцентрировано на образовании и механизме действия физиологически активных метаболитов арахидоновой кислоты и на био­логическом феномене, в котором могут участвовать эти вещества.

Образование эйкосаноидов. Простагландины — первые из выделенных мета­болитов арахидоновой кислоты — названы так потому, что впервые они были выявлены в сперме. Считалось, что они секретируются предстательной железой. По мере того как выявлялись другие активные метаболиты, становилось оче­видным наличие двух основных путей их превращения — циклооксигеназного и липооксигеназного. Эти пути синтеза схематически представлены на рис. 68-1, а строение типичных метаболитов — на рис. 68-2. Все продукты как циклооксиге­назного, так и липооксигеназного происхождения называют эйкосаноидами. Про­дукты циклооксигеназного пути — Простагландины и тромбоксан — простаноидами.

Начальный этап синтеза в обоих метаболических путях включает в себя отщепление арахндоновой кислоты от фосфолипида в плазматической мембране клеток. Затем свободная арахидоновая кислота может быть окислена циклооксигеназным или липооксигеназным путем. Первым продуктом циклооксигеназного пути является циклический эндопероксид простагландин G2 (ПГG2), который пре­вращается в простагландин Н2 (ПГН2). ПГG2 и ПГН2 служат ключевыми посред­никами в процессе образования физиологически активных простагландинов (ПГD2, ПГЕ2, ПГF2 и и ПГI2) и тромбоксана А2 (ТКА2). Первым продуктом 5-липооксигеназного пути является 5-гидропероксиэйкосатетраеноевая кислота (5-ГПЭТЕ), которая играет роль посредника при образовании 5-гидроксиэйкосатетраеноивой кислоты (5-ГЭТЕ) и лейкотриенов (ЛТА4, ЛТВ4, ЛТС4, ЛТD4 и ЛТE4). Две жирные кислоты, отличающиеся от арахидоновой кислоты, 3,11,14-эйкосатриеноивая кислота (дигомо-g-линоленовая кислота) и 5,8,11,14,17-эйкосапентаеновая кислота, могут превращаться в метаболиты. близкие по строению к этим эйкосаноидам. Простаноидные продукты первого субстрата обозначаются индексом 1; лейкотриеновые продукты этого субстрата—индек­сом 3. Простаноидные продукты второго субстрата имеют обозначение 3, в то время как лейкотриеновые продукты этого субстрата обозначаются индексом 5.

 

 

Рис. 68-1. Схема метаболизма арахидоновой кислоты. Различные лекарственные средства действуют на разные ферментные этапы, угнетая реакцию. Основными путями метаболизма являются циклооксигеназный и липооксигеназный. Фосфолипазу А2 угнетают кортикостероиды и мепакрин; циклооксигеназу — определенные салицилаты, индометацин и ибупрофен; липооксигеназу — беноксапрофен и нордигидрогуайаретиковая кислота (НДГК). Имидазол предотвращает синтез ТКА2.

Арахидоновая кислота образует простагландины, обозначаемые индексом 2, и лейкотриены, обозначаемые индексом 4. Индексы означают число двойных связей между атомами углерода в боковых цепях.

 

Фактически все клетки обладают необходимыми субстратами и ферментами для образования некоторых метаболитов арахидоновой кислоты, но различия ферментного состава тканей обусловливают различия в образуемых ими продук­тах. Эйкосаноиды синтезируются по мере их непосредственной необходимости и не хранятся- в значительных количествах для последующего высвобождения.

Циклооксигеназные продукты. Простагландины D2, Е2, F2a и I2 образуются из циклических эндопероксидов ПГG2 и ПГH2. Из числа этих простагландинов ПГЕ2 и ПГI2 обладают наиболее широким спектром физиологи­ческого действия. ПГЕ2 оказывает заметное влияние внутри тканей и синтезируется многими из них. ПГI2 (называемый также простациклином) является основным продуктом арахидоновой кислоты в эндотелиальных и гладкомышечных клетках стенок сосудов и в некоторых несосудистых тканях. ПГI2 служит вазодилататором и угнетает агрегацию тромбоцитов. Считают, что ПГD2 также играет роль в агрегации тромбоцитов и функции головного мозга, а пгf2a — в функции матки и яичников.

 

 

Рис. 68-2. Строение ти­пичных биологически ак­тивных эйкосаноидов.

 

 

Тромбоксансинтетаза катализирует включение атома кислорода в кольцо эндоперекиси ПГН2 для образования тромбоксанов. TKA2 синтезируется тромбо­цитами и усиливает агрегацию тромбоцитов.

Липооксигеназные продукты. Лейкотриены и ГЭТЕ являются конечными продуктами липооксигеназного пути. Лейкотриены обладают гистаминоподобным действием, включая индуцирование повышенной проницаемости сосудов и бронхоспазма, и, по-видимому, оказывают влияние на активность лейкоцитов. ЛТС4, ЛТD4 и ЛТE4 были идентифицированы как медленнореагирующие вещества анафилаксии (МРВ-А). (Патофизиология лейкотриенов де­тально обсуждается в гл. 202.)

Действие лекарственных средств на синтез эйкосаноидов. Многие лекарствен­ные средства блокируют синтез эйкосаноидов путем угнетения одного или не­скольких ферментов на путях их биосинтеза. Глюкокортикоиды и противомаля­рийные средства, такие как акрихин, препятствуют отщеплению арахидоновой кислоты от фосфолипидов (см. рис. 68-1). Циклооксигеназа непосредственно угнетается нестероидными противовоспалительными средствами, включая сали­цилаты, индометацин и ибупрофен. Беноксапрофен (Benoxaprofen)—еще одно нестероидное противовоспалительное средство — угнетает опосредуемое липооксигеназой превращение арахидоновой кислоты в ГПЭТЕ. Антидепрессант транса­мин угнетает превращение циклических эндоперекисей в ПГI2, а имидазол — синтез тромбоксана. Тот факт, что какое-то лекарственное средство подавляет синтез определенного эйкосаноида, не означает, что действие данного лекарст­венного средства непосредственно приводит к дефициту этого продукта. Боль­шинство этих лекарственных средств такого рода угнетают ранние этапы путей синтеза и поэтому блокируют образование не одного, а нескольких продуктов. Кроме того, некоторые из этих лекарственных средств оказывают и другие влияния. Например, индометацин не только угнетает образование циклических эндоперекисей, осуществляемое при помощи циклооксигеназы, но может также и нарушать транспорт кальция через мембраны, угнетать зависимые от цикличе­ского аденозинмонофосфата (циклического АМФ) протеинкиназу и фосфодиэстеразу, а также угнетать один из ферментов, ответственных за расщепление ПГЕ2. Не существует ни одного истинно специфичного ингибитора синтеза и ни одного специфичного антагониста рецепторов для отдельных метаболитов арахидоновой кислоты, которые можно было бы использовать в терапевтических целях. Отсутствие таких лекарственных средств является важным барьером, мешающим устано­вить роль этих метаболитов в физиологических и патофизиологических процессах.

Метаболизм и количественный анализ эйкосаноидов. Метаболиты арахидо­новой кислоты быстро диссеминируют in vivo. Простагландины серий Е и F, несмотря на то что они являются химически стабильными веществами, почти полностью расщепляются во время прохождения через печень или легкие. Таким образом, по существу все количество неметаболизированного ПГЕ2, определяемое в моче, образуется в результате секреции из почек и семенных пузырьков, в то время как содержащиеся в моче метаболиты ПГЕ2 характеризуют его синтез (ПГЕз) во всем организме. Как ПГI2, так и ТКА2 химически нестабильны и также подвергаются быстрой диссимиляции. Поскольку продолжительность жизни ПГЕ2, ПГI2 и ТКА2 in vivo невелика, измерение количества их неактивных метаболитов обычно используют в качестве показателя скорости их образования. ПГЕ2 пре­вращается в 15-кето-13,14-дигидро-ПГЕ2; ПГI2 — в 6-кето-ПГF1a, а ТКА2 — в ТКВ2. Существует пять методов измерения содержания метаболитов арахидо­новой кислоты в физиологических жидкостях: количественное определение биоло­гической активности, радиоиммунный метод, хроматографический метод, опреде­ление числа рецепторов и масс-спектрометрия. При использовании любого из этих методов необходимо соблюдать определенные предосторожности при обра­щении с образцами биологических жидкостей, поскольку синтез простагландинов может быть повышенным во время сбора этих образцов. Например, если кровь свернулась или тромбоциты не были тщательно отделены от плазмы, то образо­вание больших количеств ПГЕ2 и ТКА2 во время исследования может привести к получению ошибочных результатов. Добавление ингибитора синтеза простагландина в пробирку для сбора крови сведет эту проблему к минимуму.

 

Физиология. Простагландины и лейкотриены имеют специфические рецепторы на плазматических мембранах клеток печени, желтого тела, надпочечников, липоцитов, тимоцитов, матки, панкреатических островков, тромбоцитов и эритро­цитов. Большинство этих рецепторов обладает специфичностью к эйкосаноидам определенного типа. Например, рецептор ПГЕ на плазматической мембране клеток печени связывает обладающие высоким сродством пге1 и ПГЕ2, но не связывает Простагландины классов A, F и I. Пострецепторные механизмы, с помощью которых связывание простагландинов изменяет функцию клетки, недо­статочно ясны. Нормальное физиологическое функционирование эйкосаноидов не опосредуется через плазму крови. Вместо этого они действуют как местные, меж­клеточные и/или внутриклеточные модуляторы биохимической активности в тка­нях, в которых они образуются (например, пара.кринная функция). Эйкосаноиды являются аутокоидами, а не гормонами. Большинство из них обладает очень непродолжительным периодом жизни в циркулирующей крови вследствие их химической-нестабильности и/или быстрого расщепления.

Липолиз. ПГЕ2, синтезируемый липоцитами, имеет специфические ре­цепторы в липоцитах и является сильным эндогенным ингибитором липолиза. Поскольку для стимуляции липолиза гормонами необходимо образование цикли­ческого АМФ, было довольно подробно исследовано взаимодействие между ПГЕ и аденилатциклазой. ПГЕ угнетает липолиз путем снижения образования цикли­ческого АМФ в ответ на действие адреналина, адренокортикотропного гормона (АКТГ), глюкагона и тиреотропного гормона (ТТГ). Таким образом, ПГЕ может действовать как эндогенное антилиполитическое вещество, препятствуя стимуля­ции гормонами образования циклического АМФ.

Инсулин и ПГЕ могут действовать независимо друг от друга при их антилиполитическом воздействии на липоциты. Например, инсулин, но не ПГЕ, угнетает стимуляцию липолиза экзогенным циклическим АМФ в изолированных липоци­тах, но оба эти вещества подавляют стимулированное гормоном образование циклического АМФ. Это позволяет предположить, что место действия инсулина находится дистальнее места стимуляции аденилатциклазы. В организме некото­рых животных ПГЕ угнетает глюкагон-индуцированный липолиз, в то время как инсулин не оказывает влияния на этот процесс.

Баланс натрия и воды. Ренин-ангиотензин-альдостероновая систе­ма служит основным регулятором гомеостаза натрия, а контроль за водным балансом осуществляется главным образом вазопрессином. Метаболиты арахидоновой кислоты влияют на обе эти системы. ПГЕ2 и ПГI2 стимулируют секрецию ренина, а ингибиторы синтеза простагландинов оказывают противоположное действие. ПГЕ2 и ПГI2 уменьшают сопротивление почечных сосудов и увеличи­вают почечный кровоток; это приводит к перераспределению кровотока от наружного слоя коры почек к юкстамедуллярной области почек. Ингибиторы синтеза простагландина, такие как индометацин и меклофенамат (meclofenamate), напротив, уменьшают общий почечный кровоток и шунтируют оставшуюся его часть к наружному слою коры почек, что может привести к острому спазму сосудов почек и острой почечной недостаточности, особенно при уменьшении объема циркулирующей крови и отечных состояниях. ПГЕг является натрийуретиком, тогда как ингибиторы циклооксигеназы вызывают задержку натрия и воды в организме.

Индометацин также увеличивает чувствительность к экзогенному вазопрессину, например, у собак. И наоборот, ПГЕ2 уменьшает стимулированный вазопресеином транспорт воды. Поскольку такое действие ПГЕ2 нарушается введе­нием дибутирилциклического АМФ, то наиболее вероятно, что ПГЕ2 будет препят­ствовать стимуляции аденилатциклазы вазопрессином.

Агрегация тромбоцитов. Тромбоциты обладают способностью синтезировать ПГЕ2, ПГD2 и ТКА2. Физиологическое значение ПГЕ2 и ПГD2 в функции тромбоцитов не установлено, ТКА2 является сильным стимулятором агрегации тромбоцитов; в противоположность этому ПГI2, образуемый в эндотелиоцитах стенок кровеносных сосудов, напротив, играет роль сильного антагони­ста агрегации тромбоцитов. ТКА2 и ПГI2 могут оказывать свои разнонаправленные воздействия, соответственно уменьшая и увеличивая образование циклическо­го АМФ в тромбоцитах.

Противодействуют агрегации тромбоцитов ингибиторы синтеза эндогенных простагландинов. Например, единичная доза ацетилсалициловой кислоты может подавить нормальную агрегацию тромбоцитов на 48 ч и более, предположительно путем угнетения опосредуемого циклооксигеназой синтеза ТКА2. Длительность фазы угнетения циклооксигеназы единичной дозой этого препарата в тромбоци­тах продолжительнее, чем в других тканях, поскольку тромбоцит в отличие от ядросодержащих клеток, способных синтезировать новые белки, не обладает соответствующими структурами для образования нового фермента. Следователь­но, действие ацетилсалициловой кислоты продолжается до тех пор, пока не будут выделены в кровь вновь образованные тромбоциты. С другой стороны, эндотелиоциты быстро восстанавливают активность циклооксигеназы после прекращения лечения и, таким образом, восстанавливается продукция ПГI2. В этом заключает­ся одна из причин того, что организм больных, принимающих ацетилсалициловую кислоту, не предрасположен к чрезмерному тромбообразованию. Кроме того, тромбоцит более чувствителен к препарату, чем эндотелиоцит.

Повреждение эндотелия может привести к агрегации тромбоцитов вдоль стенки кровеносного сосуда, вызывая местное уменьшение синтеза ПГI2 и тем самым открывая возможность избыточной агрегации тромбоцитов в месте по­вреждения сосудистой стенки.

Действие на сосуды. Вазоактивные свойства метаболитов арахидоновой кислоты относятся к числу самых замечательных эффектов этих веществ. ПГЕ2 и ПГI2 являются вазодилататорами, а ПГF2a, ТКА2 и ЛТС4, ЛТD4, ЛТE4 — вазоконстрикторами в большинстве участков сосудистого русла. Эти свойства, по-видимому, представляют собой результат их прямого действия на гладкую мускулатуру сосудистой стенки. Если системное артериальное давление поддерживается в пределах физиологической нормы, то действие расширяющих сосуды метаболитов арахидоновой кислоты приводит к увеличению кровотока. Однако в случае понижения артериального давления кровоток будет уменьшать­ся, поскольку при системной гипотензии индуцированное катехоламинами суже­ние сосудов скомпенсирует сосудорасширяющее действие простагландинов. Та­ким образом, при оценке влияния метаболитов арахидоновой кислоты на крово­ток в сосудистом русле того или иного органа необходимо исключить существен­ные изменения системного артериального давления.




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 612; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.