Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эмоциональная реакция на диабет 1 страница




Аллергия к инсулину

 

Инсулиновая аллергия обусловлена антителами к инсулину класса IgE. Она проявля­ется немедленными реакциями с локальными болями или зудом, замедленными местными реакциями с плотным отеком, длящимися до 30 ч, и появлением генерализованной сыпи или анафилаксии. Системные реакции наблюдают обычно у тех больных, которые по тем или иным причинам прекращали инсулинотерапию, а затем возобновили ее. В таких слу­чаях аллергическая реакция может возникать уже на вторую инъекцию инсулина. Легкие реакции можно снять антигистаминными препаратами.

 

Таблица 327-15. Инсулиновая десенсибилизация'

 

Время.ч Доза, ЕД Способ введения
  0,001 Внутрикожно
0,5 0,002 »
  0,004 Подкожно
1,5 0,01 »
  0,02 »
2,5 0,04 »
  0,1 »
3,5 0,2 »
  0,5 »
4,5   »
    »
5,5   »
    »

 

 

1После десенсибилизации вводят по 2—10 ЕД обычного инсулина каждые 4—6 ч в течение 24—36 ч. Переход к инсулину промежуточного дейст­вия осуществляют не ранее чем после шестой инъекции.

Схема J. A. Galloway. Подробности см. J. A. Galloway, R. Bressler, Med. din. North Amer., 62:663, 1978.

 

 

При тяжелом течении требуется десенсибилизация. Схема однодневной десенсибилизации приведена в табл. 327-15. После десенсибилизации прерывать инсулинотерапию уже нельзя.

Всегда трудно примириться с фактом хронического заболевания, требующего измене­ния всего образа жизни. Особенно это касается диабета, поскольку больные, как правило, сознают, что у них возможны поздние осложнения, а продолжительность жизни уменьше­на. Поэтому неудивительно, что эмоциональная реакция на диабет часто мешает лечению. С одной стороны, первая реакция может быть отрицательной и больной отказывается от помощи. С другой стороны, возможен полный уход в болезнь. Врач должен сделать все, чтобы больной выбрал среднюю позицию, т. е. отдавал бы себе полный отчет в своем со­стоянии и в то же время разумно относился к нему, не впадая в отчаяние. Задача заключа­ется в том, чтобы жить с диабетом, а не для него. Больные диабетом не отличаются от других больных в том плане, что они могут пытаться использовать свою болезнь для воз­действия на близких и врача. Особенно остро эта проблема стоит у детей и подростков. Хотя психиатрические аспекты диабета здесь не рассматриваются, большинство труднос­тей можно предвидеть и преодолеть, если сочетать здравый смысл с симпатией к больному и твердостью. Следует также внушать больному осторожную надежду на то, что в буду­щем появятся лучшие, чем настоящее время, способы лечения.

 

 

ГЛАВА 328. ЛАКТАТ-АЦИДОЗ

 

Дэниел У. Фостер (Daniel W. Foster)

 

Лактат-ацидоз — распространенное состояние. Он обусловлен тем, что во всех случа­ях, когда оксигенация недостаточна для обеспечения энергетических потребностей, молоч­ная кислота в скелетных мышцах и других тканях образуется с повышенной скоростью. Таким образом, лактат-ацидоз представляет собой общий конечный результат любых за­болеваний, сопровождающихся циркуляторным коллапсом или гипоксией. Лактат-аци­доз может возникать и в отсутствие явной гипоксии тканей. В большинстве случаев его причину удается выяснить, но различают и «идиопатический» лактат-ацидоз.

Биохимические основы. В узком смысле биологическую жизнь можно определить как способность генерировать макроэргические фосфатные связи внутри клетки. Наиболее важ­ным макроэргическим соединением является аденозинтрифосфат (АТФ), но и другие нук­леотиды, например гуанозитрифосфат, также играют существенную роль. Структура и функция любой ткани организма прямо или косвенно зависят от АТФ или эквивалентных макроэргических нуклеотидов. При гипоксии ткани АТФ не может образовываться в нуж­ных количествах и возникает лактат-ацидоз. Он являеется метаболическим следствием ак­тивации запасной системы образования АТФ при нарушении основного энергопродуци­рующего пути. Нормальный механизм генерации АТФ в аэробных условиях показан на рис. 328-1. При окислении субстратов, таких как свободные жирные кислоты или глюкоза, до ацетил-КоА входящие в их состав атомы водорода переносятся на никотинамидаденин-динуклеотид (НАД) с образованием восстановленной формы пиридиннуклеотида (НАД•Н). Окисление ацетил-КоА до СО, в цикле Кребса также приводит к образованию НАД*Н. Основное количество НАД«Н образуется в митохондриях, где происходит окис­ление жирных кислот и локализованы ферменты цикла трикарбоновых кислот; цитозоль­ный НАД•Н должен попадать в митохондрии с помощью «челночных» систем, поскольку он не может непосредственно проникнуть через внутреннюю митохондриальную мембра­ну. В присутствии кислорода НАД•Н окисляется цепью транспорта электронов; конечным продуктом является вода («метаболическая вода»). На каждый моль НАД•Н, проходящий через последовательность цитохромов, образуется 2—3 моля АТФ. При нормальном со­держании кислорода в тканях и высоких запасах АТФ скорость распада гликогена и окис­ления глюкозы мала (пастеровский эффект). И наоборот, при низком содержании кислорода запасы АТФ уменьшаются и распад гликогена и гликолиз активируются.

 

 

Рис. 328-1. Схема аэробного метаболизма.

Клеточные «отсеки» не указаны. Гликолиз протекает в цитозоле, тогда как ферменты окисления жир­ных кислот и цикла Кребса локализуются в митохондриях. Пунктирные линии означают, что в присут­ствии кислорода гликогенолиз и гликолиз заторможены (см. текст).

Рис. 328-2. Фосфофруктокиназа и гликолиз. Знак «минус» означает ингибирование, знак «плюс» — активацию (см. текст).

 

 

Регуляция гликолиза осуществляется в основном ферментом фосфофруктокиназой (ФФК). Как показано на рис. 328-2, этот фермент катализирует превращение фруктозо-6-фосфата во фруктозо-1, 6-дифосфат. Активность ФФК регулируется несколькими аллосте­рическими модуляторами. В мышцах и других тканях главным физиологическим ингиби­тором является АТФ, а сильным активатором — АМФ. В печени основным регулятором ФФК служит фруктозо-2,6-дифосфат (см. гл. 327). При нормальной концентрации фруктозо-2,6-дифосфата скорость гликолиза (глюкозо-6-фосфат ® пируват) высока, а глюконео­генез (пируват ® глюкозо-6-фосфат) заторможен. В мышцах концентрация фруктозо-2,6-дифосфата мала, и здесь он, как считают, не играет главной регулирующей роли. Концен­трация фруктозо-2,6-дифосфата в печени при гипоксии падает, и метаболизм гепатоцитов сдвигается, таким образом, в сторону глюконеогенеза. Эта адаптивная реакция способ­ствует поглощению и утилизации лактата в условиях, когда ускоряется его образование вне печени. Сокращение мышцы активирует распад гликогена и продукцию молочной кислоты, но парадоксально, что концентрация фруктозо-2,6-фосфата при сокращении сни­жается. Это подтверждает точку зрения о том, что активность фосфофруктокиназы и гли­колиз в мышце регулируются в основном отношением АТФ/АМФ, а не фруктозо-2,6-дифосфатом.

Последовательность событий, возникающих при гипоксии ткани, схематически пред­ставлена на рис. 328-3. Когда кровоток в периферических тканях снижается настолько, что количество кислорода становится меньше, чем необходимо для удовлетворения энергети­ческих потребностей, поток электронов по цепи их транспорта нарушается или блокирует­ся (все цитохромы оказываются восстановленными). Из-за этого блока НАД•Н, который продолжает образовываться до последней минуты, не может быть окислен, что приводит к росту отношения НАД•Н/НАД как в митохондриях, так и в цитозоле. В результате все равновесные реакции, в которых роль кофактора играет НАД•Н, сдвигаются в сторону восстановления (например, оксалоацетат ® малат, пируват ® лактат), замедляя поток суб­стратов через многие критические пункты. Кроме того, в таких условиях не происходит синтеза АТФ и его концентрация в ткани снижается. Соответственно увеличивается уро­вень АДФ и АМФ. В результате активируется фосфофруктокиназа, что ускоряет распад гликогена и окисление глюкозы. Ускорение гликолиза приводит к гипепродукции пировиноградной кислоты, которая из-за повышенного содержания в клетке НАД•Н восстанав­ливается в молочную кислоту. Проще говоря, ацидоз при тканевой гипоксии обусловлен превращением нейтрального субстрата гликоген/глюкоза в сильную пировиноградную кислоту. Это именно лактат-ацидоз, так как высокое отношение НАД•Н/НАД сдвигает лактатдегидрогеназную реакцию вправо. Перечисленные изменения показаны на рис. 328-4.

 

 

Рис. 328-3. Схема анаэробного метаболизма.

Заштрихованными кубиками показаны пункты метаболической блокады, обусловленной недостаточ­ным поступлением кислорода в ткани и высоким отношением НАД'Н/НАД. Жирными стрелками по­казано ускорение гликогенолиза, гликолиза и образования лактата. Гликолиз продолжается, несмотря на высокое отношение НАД'Н/НАД в цитозоле, потому, что при образовании каждой молекулы лак­тата высвобождается одна молекула НАД (используемая в глицеральдегид-3-фосфатдегидрогеназной реакции).

 

Рис. 328-4. Схема биохимических механизмов лактацидоза.

 

 

Даже при нормальном снабжении кислородом в некоторых тканях организма челове­ка продуцируется лактат. Он попадает в печень, где вступает на путь глюконеогенеза, пре­вращаясь в глюкозу (цикл Кори). Снижение поглощения лактата печенью, несомнен­но, играет роль в патогенезе лактат-ацидоза (особенно у больных с сосудистым коллап­сом, тяжелым поражением клеток печени или недостаточностью ферментов глюконеогене­за), но выраженный ацидоз, вероятно, невозможен без гиперпродукции лактата на пери­ферии. Все ли ткани при лактат-ацидозе продуцируют избыточные количества лактата или только некоторые, неизвестно.

Теоретически ускорение гликолиза, вызываемое гипоксией, можно рассматривать как альтернативную систему продукции АТФ в условиях нарушения нормального митохон­дриального механизма. Однако система гликолиза неэффективна. Один моль глюкозы, образующейся из гликогена и полностью окисляющейся в цикле Кребса, дает 37 молей АТФ, тогда как выход АТФ при превращении гликогена в пируват составляет только 3 моля. Тем не менее на короткое время гликолитическая продукция АТФ может оказаться жизненно важной.

Клинические проявления. Лактат-ацидоз проявляется тошнотой, рвотой, возбуждени­ем и дыханием типа Куссмауля, иногда наступает ступор или кома. Huckabee, который в 1961 г. привлек к проблеме лактат-ацидоза внимание клиницистов, различал две большие группы больных с повышенной концентрацией лактата в крови. Больные 1-й группы ха­рактеризовались пропорциональным увеличением уровней лактата и пирувата без при­знаков гипоксии. У больных 2-й группы содержание лактата было непропорционально высоким по сравнению с умеренной концентрацией пирувата. Huckabee предложил тер­мин «избыток лактата» для любого повышения его уровня, которое нельзя было бы отнес­ти на счет повышения концентрации пирувата, и объяснил наличие такого избытка ткане­вой гипоксией (высоким отношением НАД"Н/НАД). Связь концентрации лактата и пиру­вата с отношением НАД-Н/НАД в цитоплазме становится очевидной при преобразовании лактатдегидрогеназной реакции:

 

 

Простой способ расчета «избытка лактата» показан на рис. 328-5. В среднем уровень лактата в венозной крови в норме составляет около 1 мМ (0,6— 1,5 мМ), а концентрация пирувата—примерно 0,1 мМ(0,05—0,15мМ)1. Если при точном определении отношение лактат/пируват превышает 10—15, то это указывает, как прави­ло, на определенную степень гипоксии. На практике уровень пирувата обычно не опреде­ляют, так как его нестабильность и низкая концентрация делают это затруднительным. Поэтому избыток лактата редко выражают количественно. Однако концепция оказалась плодотворной, поскольку способствовала пониманию патофизиологии лактат-ацидоза.

Cohen и Woods предложили классификацию лактат-ацидоза, основанную не на вели­чине отношения лактат/пируват, а на клинических проявлениях (табл. 328-1). Лактат-аци­доз типа А обусловлен недостаточной перфузией или оксигенацией тканей. В эту группу входят большинство больных с лактат-ацидозом. Причиной чаще всего служит сосудис-

 

Рис. 328-5. Концепция избытка лактата (ИЛ).

Литерами Л3 и П3 обозначены концентрации лак­тата и пирувата соответственно в плазме боль­ного, а материалами Л3 и П3 — средние концен­трации этих соединений у здоровых лиц.

 

1 При определении содержания лактата и пирувата необходимо соблюдать меры пред­осторожности: пробы должны храниться на льду, а эритроциты (которые продуцируют лактат) нужно отделять немедленно.

 

Таблица 328-1. Некоторые причины лактат-ацидоза

 

А. Лактат-ацидоз при гипоксии

1. Интенсивная работа мышц (судороги, охлаждение)

2. Недостаточная перфузия или оксигенация тканей любой этиологии1 Б. Лактат-ацидоз без видимой гипоксии

1. Системные клинические состояния [алкалоз (дыхательный или метаболический); декомпенсированный сахарный диабет; лейкемия, лимфома, другие злокачественные процессы; тяжелые поражения печени; недостаточность тиамина]

2. Фармакологические вещества, гормоны, токсины (фенформин и другие бигуаниды; салицилаты; нитропруссид натрия; этанол; адреналин, глюкагон; фруктоза, сорбитол)

3. Ферментативные нарушения (глюкозо-6-фосфатаза; фруктозо-1,6-дифосфатаза; пируваткарбоксилаза; пируватдегидрогеназа; невыясненные нарушения в цикле трикарбоновых кислот)

4. Некоторые первичные миопатии

5. Идиопатический лактат-ацидоз

 

1Чаще всего причинами нарушения перфузии и оксигенации служат инфаркт миокарда, сепсис, кровотечение, снижение объема жидкости, легочная эмболия и сердечная недостаточность. Гораздо реже отмечают гипоксию, обусловленную тяжелыми легочными заболеваниями, хронической анемией, вдыханием угарного газа и отравлением цианидами. ПоСоЬеп a. Woods, 1976.

тый коллапс, и любое состояние, ведущее к шоку (например, инфаркт миокарда, эмболия легких, кровотечение, септицемия, отравление), способно вызвать лактат-ацидоз. Гипок­сии при этом может и не быть. Важно отметить, что ухудшение перфузии тканей иногда происходит и без выраженного снижения артериального давления. Физиологический лак­тат-ацидоз возникает всегда, когда при работе мышц создается кислородный долг. Экви­валентом этого состояния в патологии является лактат-ацидоз, вызываемый судорогами или охлаждением с длительной дрожью. У всех больных с лактат-ацидозом типа А отмеча­ют «избыток лактата» (по терминологии Huckabee).

У больных с лактат-ацидозом типа Б концентрация лактата в крови повышена, но признаков снижения перфузии тканей нет. Ацидоз может быть тяжелым, легким или его может вообще не быть. В крови возможно повышение содержания и лактата, и пирувата, но при тяжелом ацидозе отношение лактат/пируват возрастает. К системным клиническим состояниям, характеризующимся повышением уровня лактата в крови, относятся неком­пенсированный сахарный диабет, тяжелые поражения печени, лейкоз, недостаточность тиамина и метаболический или дыхательный алкалоз. Лактат-ацидоз часто возникает у больных диабетом при лечении бигуанидами. Поэтому Управление санитарного надзора за качеством пищевых продуктов и медикаментов США изъяло фенформин из клиничес­кой практики. Этот синдром возникает также при применении нитропруссида, передози­ровке адреналина и в отдельных случаях интоксикации другими веществами. Большинст­во последних, несомненно, вызывает гипоксию или шок, и поэтому соответствующие боль­ные должны быть отнесены к типу А. В качестве причины лактат-ацидоза часто называют этанол, но в действительности он редко вызывает этот синдром. Окисление этанола пе­ченью обусловливает высокое отношение НАД•Н/НАД в клетках и, по всей вероятности, блокирует обратное превращение лактата (и аланина) в глюкозу. Дети с недостаточностью ферментов гликолиза—глюконеогенеза—цикла трикарбоновых кислот особенно предрас­положены к лактат-ацидозу и часто погибают. При некоторых первичных миопатиях, ха­рактеризующихся патологией митохондрий, встречается рецидивирующий лактат-ацидоз. Для митохондриальных миопатий типичны «рвано-красные волокна» при модифициро­ванной окраске по Гомори и причудливой формы митохондрии (см. гл. 355). Причиной лактат-ацидоза служат, вероятно, разнообразные нарушения в цепи транспорта электро­нов обусловливающие невозможность образования АТФ при повышении потребностей в нем, например, при физической нагрузке. В большинстве случаев так называемого идио­патического лактат-ацидоза, скорее всего, также имеют место какие-то изменения митохондрий.

Патофизиологические механизмы накопления лактата при других формах заболева­ния типа Б варьируют и зачастую недостаточно изучены. Основной причиной может быть снижение печеночного поглощения лактата, связанное с ферментативными нарушениями или злоупотреблением алкоголем; например, умеренное повышение продукции лактата под влиянием гормонов или физической нагрузки в условиях ограниченной способности пече­ни экстрагировать лактат из крови приведет к ацидозу. Фармакологические вещества, ко­торые не уменьшают перфузии тканей, каким-то образом, вероятно, изменяют функцию митохондрий Такие гормоны, как глюкагон и адреналин, повышают уровень лактата, стимулируя гликолиз. При лейкозе, по-видимому, происходит как непосредственная ги­перпродукция лактата массой лейкоцитов, так и увеличение вязкости крови, что ограни­чивает капиллярный кровоток.

Большинство состояний типа Б сопровождается лишь умеренной лактацидемией, и для развития ацидоза нужны дополнительные стимулы. К последним могут относиться инфекции дегидратация, уменьшение объема крови, голодание или чрезмерная физичес­кая нагрузка. Легкое нарушение перфузии тканей (недостаточное, чтобы отнести заболе­вание к типу А), вызываемое перечисленными факторами, усугубляет основной патологи­ческий процесс; развивается выраженный ацидоз.

Диагностика. Диагноз лактат-ацидоза ставят при наличии значительного метаболи­ческого ацидоза и настолько высокой концентрации лактата, которая могла бы быть ос­новной причиной снижения содержания бикарбоната в плазме крови. Как правило, рН артериальной крови должен быть ниже 7,2, а концентрация лактата в плазме — больше 12 мМ Однако часто «лактат-ацидоз» диагностируют при незначительном повышении концентрации лактата в плазме (3—6 мМ) и почти нормальном рН. Существует много причин повышения уровня лактата в плазме, но термин «лактат-ацидоз» следовало бы употреблять лишь при тех состояниях, при которых действительно имеется ацидоз. Трудности возникают и тогда, когда у больного выявляют тяжелый ацидоз, но концентрация лактата не настолько высока, чтобы обусловить падение уровня бикарбоната (т. е. имеется смешанный ацидоз). Например, при диабетическом кетоацидозе концентрация лактата со­ставляет 3—6 мМ, но снижение рН обусловлено в основном ацетоацетатом и b-гидроксибутиратом.

Лактат-ацидоз следует подозревать всякий раз, когда метаболический ацидоз сопро­вождается наличием «анионной щели», но причина отсутствия анионов остается неясной. «Анионную щель» можно рассчитать несколькими способами; простейший из них следую­щий-[Na+]—([Cl] + [НСО3]). В норме этот показатель колеблется от 8 до 16 мМ/л, в сред­нем около 12 мМ/л. Четырьмя наиболее распространенны ми причинами метаболического ацидоза с «анионной щелью» являются диабетический или алкогольный кетоацидоз, уре­мический ацидоз, лактат-ацидоз и ацидоз, вызываемый приемом токсических веществ (са­лицилаты метанол, этиленгликоль, паральдегид). Таким образом, в отсутствие кетоаци­доза и уремии, а также каких-либо указаний на отравление вероятность того, что метaбoлический ацидоз со значительной «анионной щелью» обусловлен лактат-ацидозом, стано­вится достаточно большой.

Лечение Если лактат-ацидоз вызван шоком или гипоксией, коррекция этих состоянии приводит и к исчезновению вторичного ацидоза. Традиционное лечение предусматривает также внутривенное введение больших количеств бикарбоната натрия. Сомнения в оправ­данности такого подхода связаны с экспериментальными данными о неблагоприятном эффекте бикарбонатной терапии у собак с лактат-ацидозом, вызванным гипоксией. Значе­ние этих данных для человека неясно, хотя лечение бикарбонатом и не очень эффективно Пока в этом вопросе нет ясности, лечение целесообразно начинать с инфузии 1—2 л 0,9% солевого раствора для увеличения объема жидкости в организме, а затем уже, если не на­ступит улучшения, переходить на инфузию бикарбоната. Показания к применению би­карбоната основаны на том, что тяжелый и длительный ацидоз сам по себе может вызы­вать сосудистый коллапс. Растворы бикарбоната готовят следующим образом: для полу­чения изотонического раствора 150 мл (3 флакона по 50 мл) бикарбоната натрия (1 ммоль/мл) добавить к 850 мл стерильной дистиллированной воды. В некоторых случаях могут потре­боваться гипертонические (5%) растворы, которые имеются в продаже.

У лиц пожилого возраста и больных с нарушенной функцией почек введение больших объемов бикарбоната может вызвать перегрузку жидкостью. Когда дефицит жидкости полностью ликвидирован, наряду с интенсивной ощелачивающей терапией следует вво­дить диуретики. Иногда для профилактики отека легких требуется перитонеальный диа­лиз или гемодиализ с использованием гипертонических растворов, тогда как для коррек­ции лактат-ацидоза диализ не показан.

Успешно скорригировать лактат-ацидоз у человека удалось дихлорацетатом. Счита­ется, что это вещество стимулирует окисление пирувата и лактата путем активации пируватдегидрогеназной реакции. Хотя при длительном применении дихлорацетат вызывает полиневропатию, повреждение тестикул, катаракты и нарушения метаболизма оксалатов, Stacpoole и сотр. не отметили серьезных токсических последствий при однократном его введении в дозе 50 мг/кг массы тела. Эффект одной дозы сохраняется в течение нескольких часов. К сожалению, несмотря на уменьшение ацидоза, большинство больных все же по­гибли. Это могло бы подтверждать точку зрения, согласно которой лактат-ацидоз служит предвестником надвигающейся смерти от какого-либо тяжелого заболевания, а не основ­ной ее причиной. Для оценки возможности применения дихлорацетата в клинике необхо­димы дальнейшие исследования.

 

ГЛАВА 329. ГИПОГЛИКЕМИЯ; ИНСУЛИНОМА И ДРУГИЕ ГОРМОНАЛЬНО-АКТИВНЫЕ ОПУХОЛИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

 

Дэниел У. Фостер, Артур Г. Рубинштейн (Daniel W. Foster, Arthur H. Rubinstein)

 

 

Сохранение постоянной концентрации глюкозы в плазме — необходимое условие здо­ровья. Опасность гипогликемии (в короткие промежутки времени более опасной, чем ги­пергликемия) объясняется тем, что глюкоза служит основным энергетическим субстратом для мозга. В отсутствие глюкозы, как и кислорода, нарушается функция мозга, возникает повреждение ткани, и, если дефицит сохраняется достаточно долго, наступает смерть. Чув­ствительность мозга к гипогликемии обусловливается тем, что в отличие от других тканей организма он не способен использовать свободные жирные кислоты крови в качестве ис­точника энергии. Короткоцепочечные метаболиты свободных жирных кислот — ацетоуксусная и b-гидроксимасляная кислоты («кетоновые тела») эффективно окисляются мозгом и при умеренной концентрации в плазме могут защищать центральную нервную систему от повреждений, вызываемых гипогликемией. Однако, поскольку кетоз развивается в те­чение нескольких часов, кетогенез не может служить эффективным механизмом защиты от острой гипогликемии. Таким образом, для сохранения функции центральной нервной сис­темы на ранних стадиях голодания или в условиях гипогликемии требуется быстрое увели­чение продукции глюкозы печенью. Одновременно уменьшается использование глюкозы периферическими тканями, которые «переключаются» на альтернативный субстрат — сво­бодные жирные кислоты. Эти адаптивные механизмы контролируются гормонами и в обыч­ных условиях достаточно эффективны. Однако иногда система разрушается или не справля­ется с нагрузкой, что приводит к возникновению клинического синдрома гипогликемии.

Механизмы защиты от гипогликемии. Механизмы развития гипогликемических со­стояний легче всего понять, если вкратце рассмотреть нормальный метаболизм энергети­ческих субстратов. В обычных условиях энергетические потребности организма удовлет­воряются экзогенными веществами, поступающими с пищей. Окисление молекул, входя­щих в состав пищевых продуктов, до двуокиси углерода и воды сопровождается образова­нием аденозинтрифосфата (АТФ) — главного макроэргического соединения организма. В каком-то смысле жизнь можно определить как постоянную способность производить АТФ (и аналогичные макроэргические нуклеотиды) для поддержания любых проявлений кле­точной активности. Когда потребление калорий превышает сиюминутные энергетические потребности, как это бывает после обычного приема пищи, избыток субстратов накапли­вается в форме жира, структурного белка и гликогена. Поток субстратов в этой фазе, назы­ваемой анаболической, движется от кишечника к печени, в места утилизации и на­копления. Основной гормон, регулирующий анаболическую фазу обмена веществ, — это инсулин; уровень контррегуляторных гормонов в этот период снижен.

Катаболическая стадия обмена веществ начинается примерно через 5—6 ч пос­ле еды. В нормальных условиях единственный существенный период метаболизма — это ночное голодание, но иногда, в частности при тяжелых заболеваниях, этот период может длиться гораздо дольше. В период голодания/катаболизма происходит ряд обменных сдви­гов, направленных на то, чтобы сохранить уровень глюкозы в плазме в границах, обеспе­чивающих безопасность центральной нервной системы и в то же время сохранить энерге­тическое снабжение других тканей организма. Такая перестройка осуществляется двумя механизмами. Во-первых, активируется образование глюкозы в печени, а во-вторых, боль­шинство других тканей переключается на использование липидов. Вначале глюкоза, вы­свобождающаяся из печени, почти целиком образуется из печеночного гликогена. Однако поскольку печень человека содержит в среднем лишь около 70 г доступного гликогена, гликогенолиз способен поддерживать нужный уровень глюкозы в плазме только короткое время (обычно не более 8—10 ч). При физической нагрузке, стрессе или тяжелых заболева­ниях этот период значительно сокращается. Чтобы компенсировать снижение уровня гли­когена, быстро начинается глюконеогенез, при котором возникает поток субстратов от мышц и жировой ткани в печень и далее к местам утилизации. Предшественниками в син­тезе глюкозы служат лактат/пируват и аминокислоты (в основном аланин) из мышц и гли­церин, высвобождаемый жировой тканью в результате липолиза.

Переключение на жировой тип обмена достигается путем активации гормончувстви­тельной липазы в жировой ткани; этот фермент гидролизует запасенные триглицериды с образованием длинноцепочечных жирных кислот и глицерина. Судьба первых двояка. Большая их часть (в норме около 120 г в сутки) используется непосредственно, а остальная (примерно 40 г в сутки) окисляется в печени до ацетоуксусной и b-гидроксимасляной кис­лот. Эти кетоновые тела могут эффективно использоваться в качестве источников энергии большинством тканей (причем самой печенью лишь в минимальной степени), но их основ­ная роль, как уже отмечалось, — служить запасным субстратом для мозга. Переключение большинства тканей на питание липидами важно потому, что преимущественная утилиза­ция свободных жирных кислот и кетоновых тел вместо глюкозы обеспечивает сохранение последней для использования центральной нервной системой.

Катаболическая стадия обмена веществ опосредуется снижением концентрации инсу­лина в плазме наряду с усилением секреции четырех контррегуляторных гормонов: глюка­гона, адреналина, кортизола и гормона роста. Кроме того, непосредственно в тканях из симпатических нейронов высвобождается норадреналин. Главное значение в поддержа­нии уровня глюкозы придают глюкагону, тогда как адреналин играет дублирующую, или второстепенную, роль. Адреналин в качестве средства защиты от гипогликемии приобре­тает основное значение при сахарном диабете, когда реакция глюкагона очень рано исче­зает (см. гл. 328).

Анаболическая и катаболическая стадии обмена веществ отражены в табл. 329-1. На­рушение любого из адаптивных механизмов может привести к гипогликемии.

 

Таблица 329-1. Цикл еда—голодание

 

Стадия Основ­ной гормон Субстраты в плазме Направление потока субстратов Активируемый процесс
Анаболическая' Инсу­лин ­ Глюкоза От органов брюш­ной полости к местам утилиза­ции и накопления Накопление гли­когена
­ Триглицериды Синтез белка
­ Аминокислоты с разветвленной цепью Образование три­глицеридов
¯ Свободные жир­ные кислоты
¯ Кетоновые тела
Катаболическая2 Глю­кагон ¯ Глюкоза От мест накопления в печень и места утилизации Гликогенолиз
¯ Триглицериды Глюконеогенез
­ Аланин и глута­мин3 Протеолиз
­ Свободные жир­ные кислоты Липолиз
­ Кетоновые тела Кетогенез

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 465; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.077 сек.