Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Численные методы – это методы, позволяющие при помощи алгоритмов, имеющих конечное число итераций, решать различные математические задачи (заданные в




Численные методы – это методы, позволяющие при помощи алгоритмов, имеющих конечное число итераций, решать различные математические задачи (заданные в аналитическом виде). При этом набор инструкций, использующийся для написания алгоритма, ограничен и включает только такие инструкции, которые элементарно реализуются на ЭВМ (в данном случае, применительно к языкам высокого уровня). Таким образом, ограниченность набора инструкций и конечность алгоритма делает возможной его реализацию в виде программы. Решение же задач на ЭВМ в аналитическом виде затруднено.

Например, пусть нам требуется решить уравнение f (x) = 0 (т.е. найти нули функции). Очевидно, что аналитическое решение этого уравнения зависит от вида функции f (x). Если это линейная функция, то уравнение решается одним методом, если это квадратный полином – другим. Существует множество методов для решения такого уравнения, если функция является полиномиальной, тригонометрической, экспоненциальной, содержит дифференциалы, интегралы и т.д. Однако, ЭВМ не может провести анализ функции (в чем и заключается смысл аналитического решения), и поэтому численные методы поиска нуля функции построены так, что не зависят от ее вида.

Численное решение априори является неточным, т.к. погрешности возникают как из-за использования приближенного алгоритма [1], так и по причине конечности разрядной сетки ЭВМ. Конечность разрядной сетки подразумевает, что не все числа ЭВМ может хранить без погрешности. Например, самый длинный тип данных, поддерживаемый математическим сопроцессором (FPU) и распространенными компиляторами, имеет размер 10 байт. При этом самое большое по модулю число, которое может уместиться в эти рамки, составляет ~104900, а самое маленькое – ~10–4900. Но это не означает, что точность такого числа составляет 4900 знаков после запятой. Если у числа есть целая часть, то количество двоичных разрядов, остающихся для кодирования дробной части, уменьшается. Кроме того, в виду двоичности представления чисел в FPU, точно кодируются только те числа, которые являются целой степенью числа 2 (или суммой таких степеней). Например,

210 = 102 (1·21 + 0·20),

1310 = 11012 (1·23 + 1·22 + 0·21 + 1·20),

0.510 = 0.12 (1·2–1),

0.312510 = 0.01012 (0·2–1 + 1·2–2 + 0·2–3 + 1·2–4).

В противном случае число представляется в ЭВМ только с определенной погрешностью. Например, рассмотрим представление числа 0.1 с точностью до нескольких двоичных разрядов (количество разрядов указано в скобках):

0.110 = 0.0002 = 010 (3);

0.110 = 0.00012 = 0.06310 (4);

0.110 = 0.000112 = 0.0937510 (5);

0.110 = 0.0001102 = 0.0937510 (6);

0.110 = 0.00011002 = 0.0937510 (7);

0.110 = 0.000110012 = 0.0976562510 (8) и т.д.

Как видно, точно это число представить двоичными разрядами невозможно. К сказанному можно еще добавить, что дополнительные погрешности появляются при вычислении блоком FPU различных функций – тригонометрических, логарифмических, степенных и т.п. Все эти функции вычисляются либо при помощи каких-либо алгоритмов (разложение в ряды и т.д.), либо при помощи таблиц (все мы пользовались во время обучения в школе похожими таблицами). В первом случае погрешность возникает по причине неточности алгоритма, невозможности вычисления бесконечного ряда и т.п. Во втором случае происходит округление аргумента до ближайшего узла сетки таблицы, поэтому и значение функции получается неточным.

Следует также отметить, что не все задачи имеют аналитическое решение. Например, известно, что существуют неберущиеся интегралы. Если такой интеграл входит в интегральное уравнение, то решить его аналитически не удастся. Можно привести и более простые примеры функций, найти нули которых аналитическим способом (в общем виде) невозможно:

f (x) = ax3 + bx2 + сx + d,

f (x) = ax + cos(bx).

Здесь a, b, c, d – произвольные константы.

Проведение сложных математических расчетов требуется во многих отраслях науки и техники. При этом объем этих расчетов таков, что вручную за разумное время их выполнить невозможно. Примеры – распределение нагрузки между подключенными к электростанции объектами (оно должно происходить практически мгновенно при изменении потребляемой мощности), вычисление траектории космических тел, расчет движений земной коры в гео­ин­фор­ма­ци­он­ных системах (а это задачи нефтяной, газовой и других отраслей) и многое другое. Для этого и внедряются в промышленность и науку вычислительные системы и пишутся специализированные пакеты для проведения численных расчетов. Распространение же ЭВМ ставит, в свою очередь, новые математические задачи, не существовавшие ранее – распределение Internet-трафика, обсчет трехмерных моделей в графических редакторах и играх и т.п.

Таким образом, знание численных методов необходимо инженеру, область деятельности которого связана с программным обеспечением вычислительной техники и, в особенности, автоматизированных систем.




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 602; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.