Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формат выходных данных. Формат входных данных




Формат входных данных

Формат входного файла:

m – метод (в порядке их перечисления);
n – размерность СНУ;
x0 – начальное приближение;
ε – требуемая погрешность решения;
f1 f2 … fn – система функций.
x0 x1 … xk – последовательные приближения решения СНУ;
ε* – вектор невязки f(xk);
||ε*|| – норма вектора невязки.

2.5. Практическая работа №5 «Интерполирование и численное дифференцирование функций»

Обязательных методов  
Баллов за обязательные методы  
Дополнительных методов  
Баллов за дополнительные методы  
Количество вариантов  

 

Приближение функций – одна из наиболее востребованных областей численных методов. Под приближением понимается замена на интервале [а, b] исходной функции f (x) некоторой другой функцией P(x), близкой (по некоторому критерию) к исходной функции. В общем случае, P(x) является полиномом вида

(2.5.1)

где ci – некоторые действительные константы, а φi(x) – система действительных линейно-независимых функций. Т.е. любая функция этой системы не может быть представлена в виде линейной комбинации других. Например,

φi(x) = sin i (x).

Задача состоит в том, чтобы, выбрав систему функций, найти такие коэффициенты ci, при которых отклонение полинома P(x) от исходной функции удовлетворяло бы выдвигаемым критериям. Исходными данными являются узлы xi, принадлежащие отрезку [а, b] и значения функции в этих узлах yi = f (xi), i = 0, 1, …, m. При этом полином P(x) называют приближающим или аппроксимирующим (от англ. approximate – приблизительный):

f (x) = P(x) + R(x), (2.5.2)

где R(x) – т.н. остаточный член.

В данной практической работе мы будем рассматривать такие полиномы, у которых m = n.

Например, аппроксимирующий полином можно построить, воспользовавшись методом наименьших квадратов (МНК). При этом φi(x) может быть системой любых линейно-независимых функций, а коэффициенты ci ищутся из условия минимального СКО полученного полинома от исходной функции:

(2.5.3)

Картина при этом получается примерно следующая (рис. 2.5.1):

Рис. 2.5.1 – Аппроксимация МНК

Если требуется построить такой полином, чтобы он проходил через все точки (xi, yi), то его называют интерполирующим (от англ. interpolate). Здесь приставка «inter-» имеет смысл «между». Т.е. нас интересует поведение полинома только между точками (xi, yi), т.е. между границами отрезка [а, b]. А критерий близости интерполирующего полинома к исходной функции выглядит как

yi = P(xi). (2.5.4)

При этом обычно x0 = a, xn = b. Для того же набора точек, что и на рисунке выше, получим следующее:

Рис. 2.5.2 – Интерполяция методом Ньютона или Лагранжа

На рисунке изображены полиномы Ньютона и Лагранжа (в сущности, это разные формы одного и того же полинома степени n), которые мы будем изучать в ходе данной практической работы. Как видно, их недостатком является осцилляция при большом количестве точек. Поэтому их область применения лучше ограничивать теми случаями, когда точек немного. В противном случае нужно пользоваться другими интерполирующими и аппроксимирующими полиномами.

Если же нас интересуют значения полинома P(x) за пределами отрезка [а, b], то такой полином называется экстраполирующим (от англ. extrapolate, где приставка «extra-» имеет смысл «сверх», «за пределами»).

Аппроксимация функций необходима в двух случаях.

Во-первых, если исходная функция неизвестна. Т.е. имеется только некоторая сетка {xi} и значения функции в узлах сетки {yi}. В этом случае говорят, что функция задана таблично. Такая ситуация может складываться в любом эксперименте – известно значение искомой характеристики yi только в некоторых точках xi в пространстве ее аргументов RZ, но необходимо иметь возможность найти значения этой характеристики во всех точках некоторого подпространства XZ Ì RZ. Например, зная давления в некоторых точках трубы с газом, можно выдать прогноз давления по всей трубе. Это поможет найти области падения давления (т.е. нарушения герметичности трубы) или, наоборот, области повышенного давления (что может привести к прорыву трубы в будущем) и оперативно отреагировать на внештатную ситуацию. Или, зная несколько координат некоторого космического тела, движущегося в пространстве, можно построить достаточно гладкий интерполирующий полином, который ответит на вопрос, как выглядела траектория тела в те моменты, когда мы тела не наблюдали (например, оно было закрыто другими космическими телами или находилось за горизонтом, т.е. было невидимо из-за вращения Земли). Если использовать экстраполирующий полином, то можно узнать, как вела себя траектория тела до начала наблюдений, и как она будет вести себя в будущем.

Во-вторых, даже если аналитический вид функции известен, она может иметь очень сложный вид. Существуют различные задачи в физике, математике и пр. науках, где вычисление некоторых функций в одной точке пространства аргументов может занимать от нескольких секунд до часов, дней и т.д. В этом случае, если время ограничено, вычисляют значение функции только в нескольких узлах (получая табличную функцию) и проводят аппроксимацию или интерполяцию.

Сетка {xi} при i = 0, 1, …, n имеет n+1 узел. Она может быть равномерной или неравномерной. Если сетка равномерная (т.е. расстояние между ее соседними узлами одинаковое), то все узлы задавать не обязательно. Достаточно знать начальный узел x0 и шаг сетки h:

xi = x0 + ih, i = 0, 1, …, n. (2.5.5)

Если заданы только границы отрезка (точки a и b, или x0 и xn), то из (2.5.5) следует, что xn = x0 + nh, т.е. шаг можно найти по формуле

(2.5.6)

Все вышесказанное можно отнести также и к задачам численного дифференцирования (заметьте, что, говоря об аппроксимации и упомянутых ее разновидностях, мы не употребляем слово «численная», т.к. это в принципе чисто численные методы). Только в этом случае нас интересует не сама функция, а некоторая ее производная. Поэтому будем заменять производную функции (см. 2.5.2) производной аппроксимирующего полинома:

f (k)(x) = (P(x) + R(x))(k) = P(k)(x) + R(k)(x). (2.5.7)

В данной практической работе мы будем находить первую и вторую производные полинома P(x). При этом

(2.5.8)




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 945; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.