Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тромбоциты




Ретикулоциты

 

Это молодые формы эритроцитов. Свое название получили от латинского слова rete, т. е. «сеть» – при специальном методе окраски в них выявляется сетчатый рисунок – остатки не успевших до конца разрушиться цистерн эндоплазматического ретикулума – «биохимической фабрики» клетки, где еще не полностью завершился синтез гемоглобина и есть остатки свободного, не вошедшего в его состав железа. В норме в периферической крови количество ретикулоцитов составляет 2–12 % от общего содержания эритроцитов. Количество ретикулоцитов в периферической крови отражает функциональную активность костного мозга: их уменьшение свидетельствует об угнетении эритропоэза, а увеличение – об активации этого процесса. Снижение количества ретикулоцитов встречается при гипо‑, апластических, В12‑фолиево‑дефицитных анемиях. Повышение количества ретикулоцитов наблюдается при гемолитических анемиях, адекватной терапии В12‑фолиево‑дефицитной анемии, острых кровопотерях (может свидетельствовать о скрытом кровотечении), метастатическом поражении костного мозга.

 

 

Это самые маленькие по размеру клетки крови, они безъядерные, имеют неправильную округлую форму, диаметр этих клеток – 1–4 мкм, толщина – 0,5–0,75 мкм. В норме содержание тромбоцитов составляет 180–320 × 109/л. Тромбоциты образуются в костном мозгу путем отщепления участков цитоплазмы от гигантских клеток‑мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. В крови тромбоциты циркулируют около 7–10 дней, затем разрушаются в печени, легких и селезенке. Основная функция тромбоцитов – это участие в процессах свертывания крови. В физиологических условиях количество тромбоцитов может снижаться во время менструации, беременности, увеличиваться после физических нагрузок. Снижение содержания тромбоцитов в периферической крови (тромбоцитопения) наблюдается в результате их повышенного разрушения, чрезмерного потребления или недостаточного образования. Тромбоцитопении подразделяются на врожденные и приобретенные, в основе врожденной (гипопластической, амегакариоцитарной) тромбоцитопении лежит отсутствие или резкое снижение количества мегакариоцитов в костном мозге. В основе приобретенных тромбоцитопений лежат процессы, приводящие к угнетению пролиферации клеток костного мозга; механическая травматизация тромбоцитов при заболеваниях селезенки; замещение костного мозга опухолевой тканью; иммунные процессы; повышенное потребление тромбоцитов в результате тромбозов, ДВС‑синдрома; наследственные генные мутации. Тромбоцитоз (увеличение количества тромбоцитов в крови) наблюдается при миелопролиферативных заболеваниях (полицитемия, хронический миелолейкоз, миелофиброз, миелосклероз); при воспалительных процессах (ревматизм, ревматоидный артрит, туберкулез, саркоидоз, язвенный колит); при злокачественных заболеваниях с метастазами в костный мозг; после спленэктомии; на фоне лечения кортикостероидами.

 

Эозинофильный промиелоцит не всегда отличим от нейтрофильного промиелоцита. Кроме полного сходства в ядерной структуре, они могут иметь похожие морфологические признаки и цитоплазмы. Изучение ядра эозинофильного промиелоцита указывает на сохранение структурности его хроматиновых нитей с равномерным их распределением, но местами с некоторым утолщением. В ядрах нередко можно обнаружить сохранившиеся ядрышки. Базофильно окрашенная цитоплазма, как и у нейтрофильного промиелоцита, отличается разнообразной по окраске и размерам зернистости.

 

Миелоцит эозинофильный. По структурным чертам ядро эозинофильного миелоцита неотличимо от ядра нейтрофильного миелоцита. Как и у последнего, ядро эозинофильного миелоцита также приобретает отчетливое чередование более темных и светлых участков благодаря утолщению хроматиновых нитей и очаговому их уплотнению. Специфичность эозинофильного миелоцита определяется по зернистости. Эозинофильная зернистость густо заполняет цитоплазму клетки и имеет желто‑розовый, золотисто‑желтый цвет, одинаковые размеры. Кроме того, некоторые зерна, оставаясь недозревшими, имеют базофильный компонент, что определяет их синий оттенок. Смешение эозинофильной и базофильной субстанции нередко придает гранулам эозинофилов грязноватый коричнево‑зеленый цвет. Иногда так окрашивается вся зернистость эозинофильной клетки, особенно часто при лейкозах.

 

Метамиелоцит эозинофильный. По описанию ядра нейтрофильного метамиелоцита можно определить и эозинофильный метамиелоцит. Эозинофильная природа клетки здесь также устанавливается по специфической зернистости. Ядро эозинофильного метамиелоцита не всегда можно отличить от палочкоядерного эозинофила, поскольку обилие эозинофильной зернистости может стушевывать очертание ядра. Кроме того, ядро эозинофильного метамиелоцита, как и у зрелых форм, несколько бледнее и по структуре хроматинной сети рыхлее, чем у нейтрофила.

 

Промиелоцит базофильный. Дифференцированная направленность развития промиелоцитов бывает выражена нечасто. Промиелоцит можно отнести к базофильному ряду, если в зернистости цитоплазмы удается определить особенности, присущие этому ряду гранулоцитов. Ядро базофильного промиелоцита может сохранять нежную структуру хроматиновых нитей, нередко с ядрышками. В базофильно окрашенной цитоплазме содержится обильная полиморфная зернистость. Среди различных цветовых оттенков преобладание крупной темно‑синей и темно‑фиолетовой зернистости позволяет отнести промиелоцит к базофильному ряду. Для базофильной зернистости характерна метахромазия: при окраске метиленовым синим гранулы могут давать необычную для синьки красную окраску. Эта особенность часто подмечается в базофилах, особенно при хроническом миелолейкозе, когда при вращении микрометрического винта в крупных базофильных зернах удается видеть красноватые оттенки.

 

Миелоцит базофильный можно распознать по структурным признакам ядра, характерным для миелоцитов всех трех гранулоцитарных рядов, и специфической крупной базофильной зернистости разного калибра, не очень густо заполняющей цитоплазму. Последняя чаще, чем у миелоцитов нейтрофильных, имеет базофильные оттенки.

 

Метамиелоцит базофильный может быть распознан по размерам и форме ядра. Крупная базофильная зернистость без труда определяет природу клетки.

 

Морфология клеток лимфатического ростка

Деление клеток лимфатического ряда по степени зрелости на основании морфологических черт является условным. Трудности прежде всего связаны с тем, что клетки‑предшественницы не имеют четких отличительных морфологических признаков, и при световой микроскопии их принимают за лимфоциты. Эти же черты имеют предшественники В– и Т‑лимфоцитов, неотличимые от последующих стадий развития.

 

Лимфобласт. Как и миелобласт в гранулоцитарном ряду, эта клетка представляется родоначальной для лимфатического ряда. Ее размеры достигают 20–22 мкм. Округлое ядро имеет нежносетчатое строение и равномерное распределение хроматиновых нитей. Местами хроматиновые нити как бы образуют утолщения. В ядре отчетливо видны ядрышки от 1 до 2, реже – 3. Ядро окружено узким пояском светлой базофильной цитоплазмы и располагается то центрально, то эксцентрично в отношении цитоплазмы. Вокруг ядра цитоплазма более светлая, не всегда с равномерным переходом в более ярко окрашенную периферическую зону. Цитоплазма у лимфобласта имеет различную степень базофилии, хотя и отличается светлыми тонами.

 

Пролимфоцит. Структурные черты пролимфоцита легко представить при сопоставлении с лимфоцитом. От последнего эта клетка отличается несколько большими размерами, достигая 11–12 мкм, более бледно окрашенным ядром, хроматиновые нити не образуют грубоглыбчатую структуру ядра и располагаются более равномерно, но ядро пролимфоцита не имеет нежной сетчатой структуры, оно как бы рыхлое. В нем можно видеть ядрышко или его остатки. Цитоплазма пролимфоцита, так же как цитоплазма лимфоцита, окружает ядро в виде то узкого, то более широкого пояска, в ней могут быть красные зернышки. Азурофильная зернистость считается характерной для Т‑лимфоцитов.

 

Морфология клеток моноцитарного ростка

Стадии развития моноцитов определяются по структуре ядра. Зрелые моноциты развиваются через стадию промоноцита из монобласта. Размеры моноцитов колеблются от 12 до 20 мкм и более.

Монобласт является родоначальной клеткой моноцитарного ряда. При всей изменчивости конфигурации ядра моноцитов ядро монобласта округлое или округло‑вытянутое, иногда бобовидное дольчатое. По нежной структуре и наличию ядрышек ядро монобласта близко к строению миелобласта. Только отмеченные очертания ядра и, может быть, несколько более широкая светлобазофильная цитоплазма могут указать на развитие этого «бласта» в сторону моноцитарной клетки. Определить монобласт можно при остром монобластном лейкозе, когда природа опухолевых клеток выявляется по цитохимическим признакам.

 

Промоноцит. Волнистые очертания, большая изогнутость ядра отличают их от монобласта. Четко заметно появление утолщений в хроматиновых нитях ядер. Отсутствуют ядрышки, невидимые в промоноцитах при обычных гематологических окрасках. Только в некоторых ядрах можно отметить их неотчетливые очертания. Цитоплазма, как и у монобластов, окрашивается в различные базофильные тона, но чаще, чем у них, в более светлые.

 

Базофилы

Это клетки, составляющие наименьшую популяцию гранулоцитов, имеют двухлопастное ядро, средний диаметр – 8– 10 мкм, цитоплазма клеток заполнена гранулами пурпурного цвета, содержащими гистамин, гепарин, компоненты калликреин‑кининовой системы, вазоактивные амины, эозинофильный хемотаксический фактор анафилаксии. Основная функция базофилов – участие в аллергических реакциях, за счет освобождения одного из основных медиаторов аллергических реакций – гистамина (около 50 % циркулирующего в крови гистамина поступает из гранул базофилов). Базофилия встречается при аллергических состояниях, при заболеваниях системы крови (хронический миелолейкоз, миелофиброз, полицитемия), при гипофункции щитовидной железы. Базопения отмечается при гиперфункции щитовидной железы, на фоне стресса, введения глюкокортикоидов, адреналина.

 

Нейтрофилы

Это клетки, обеспечивающие наряду с другими лейкоцитами неспецифическую резистентность организма. Нейтрофильные лейкоциты активно участвуют в процессах фагоцитоза, стимулируют выработку компонентов системы белков, которые участвуют в удалении чужеродных внеклеточных форм и других биологически активных веществ с антимикробными свойствами. В сосудистом русле имеются два пула нейтрофилов – циркулирующие лейкоциты и пристеночные. В нормальных условиях между ними постоянно происходит обмен, поэтому число клеток, входящих в циркулирующий или пристеночный пул, не является постоянной величиной. Общее количество сегментированных нейтрофилов, по данным разных авторов, колеблется от 45 до 70 % от общего количества лейкоцитов в периферической крови. В цитоплазме нейтрофилов содержится большое количество мелких гранул двух типов. Первичные гранулы содержат набор ферментов, участвующих в уничтожении чужеродных агентов, и являются типичными лизосомами, которые представляют собой своеобразный резервуар с ферментами.

Лизосомы содержат большое количество ферментов, которые расщепляют белки и углеводы. В лизосомах локализовано примерно 1/3 лизоцима (специальный фермент), обеспечивающего распад углеводов бактериальных клеток, способствующего последующему водному расщеплению бактерий при участии специальных ферментов. В процессе «пожирания» чужеродных клеток нейтрофилы активно выделяют из этих резервуаров в окружающих клетку среду свое содержимое – фермент лизоцим, который участвует в уничтожении чужеродных агентов. Вторичные гранулы образуют типичную специфическую зернистую структуру нейтрофилов и содержат углеводы (гликоген), жиры (липиды), ряд ферментов, а также лизоцим. В ряде случаев, при острых инфекционных заболеваниях или интоксикациях, зернистость цитоплазмы изменяется, становится более крупной и базофильной, т. е. появляется так называемая токсическая зернистость, представляющая собой незрелые, аномально окрашенные гранулы.

Фагоцитарная активность является основной функцией нейтрофилов. Способность к фагоцитозу обусловлена рядом особенностей, в частности высокой двигательной активностью. Нейтрофилы первыми прибывают в место повреждения тканей. Установлено, с одной стороны, беспорядочное (спонтанное) перемещение нейтрофилов, а с другой – целенаправленное движение клеток к объекту фагоцитоза (хемотаксис).

Наряду с фагоцитозом защитная функция нейтрофилов обеспечивается выделением в окружающую среду лизосомальных энзимов, кислой и щелочной фосфатаз, молочной кислоты, интерферона. Следует отметить, что активированные нейтрофильные лейкоциты могут оказывать положительное и отрицательное действие на различные функциональные системы как за счет имеющихся компонентов первичных и вторичных гранул, так и за счет продукции вновь синтезируемых биологически активных и других. Продукты стимулированных нейтрофилов влияют на перерождение лимфоцитов, вызывают исчезновение гранул тучных клеток, действуют на тромбоциты, активируют систему комплемента, двигательную активность макрофагов, калликреин‑кининовую систему, систему свертывания. Нейтрофилы также продуцируют факторы, регулирующие воспалительные процессы в поврежденных тканях.

Палочкоядерный нейтрофил. Ядро палочкоядерного нейтрофила имеет форму жгута, палочки. Изогнутость ядра придает ему различные фигуры: подковы, кольца, буквы S и т. д. Структура ядра определяется четким чередованием компактных, до глыбчатости, участков и просветлений, придающих своеобразный вид ядру. Широкая цитоплазма нейтрофильно‑розового цвета. Цитоплазма содержит небольшое число мелких нейтрофильных зерен, расположенных в беспорядке.

Сегментоядерный нейтрофил. Последним звеном в нейтрофильном ряду является сегментоядерный нейтрофил. Его ядро состоит из нескольких фрагментов, связанных между собой тонкими нитями. Когда сегменты плотно прилегают друг к другу, эти нити остаются незаметными (при концевом прилежании сегментоядерный нейтрофил может быть похож на палочкоядерный, если он состоит из двух долек). В других случаях нити между дольками сегментоядерного нейтрофила оборваны. Структура дольки представляется грубоглыбчатой с разделением грубых частей светлыми промежутками. В результате различных взаимоотношений фрагментов возникают самые разнообразные ядерные фигуры. Количество фрагментов от 2 до 6. Цитоплазма сегментированного нейтрофила повторяет черты палочкоядерного нейтрофила. У нейтрофилов к фрагменту ядра примыкает крохотное образование, так называемое тельце Барра. Известно, что половой хроматин (тельца Барра) в нейтрофилах у женщин хорошо виден как округлая плотная долька до 1 мкм в диаметре, соединенная тонким стержнем с одним из сегментов ядра нейтрофила. Половой хроматин определяется не во всех нейтрофилах. Тельца Барра обусловлены присутствием в хромосомном наборе ядра двух X‑хромосом. Если X‑хромосом больше 2, то число телец Барра равно количеству X‑хромосом минус единица. Так называемые ракеткоподобные образования, встречающиеся у мужчин, соответствуют «барабанным палочкам» (тельца Барра женщин), но в отличие от них имеют в центре просветление.

Нейтрофилез – увеличение количества нейтрофилов в крови, наблюдается при острых воспалительных процессах, при некоторых грибковых заболеваниях, интоксикациях (уремия, сахарный диабет), болезнях системы крови (лейкозы, полицитемия), злокачественных новообразованиях, острой кровопотере. Усиление переселения клеток из костного мозга может возникать под влиянием кортикостероидов. Высвобождение адреналина как при физической нагрузке, так и при возбуждении, стрессе может вызвать перераспределение нейтрофилов, доходящее до двукратного повышения по сравнению с нормой их числа в периферической крови.

При некоторых заболеваниях в крови появляются молодые (незрелые) клетки нейтрофильного ряда с несегментированным ядром – миелоциты, метамиелоциты либо увеличенные нейтрофильные лейкоциты (за счет палочкоядерных форм). В таких случаях принято говорить о сдвиге лейкоцитарной формулы влево. Увеличение количества гиперсегментированных, дегенеративных форм нейтрофилов в сочетании со снижением числа палочкоядерных элементов обозначается как сдвиг лейкоцитарной формулы вправо.

Физиологический нейтрофилез может возникать при эмоциональном возбуждении, физической нагрузке, при родах.

Нейтропения – снижение числа нейтрофилов в крови. Нейтропения наблюдается при некоторых инфекционных заболеваниях (брюшной тиф, грипп, корь, краснуха и др.), болезнях системы крови (апластическая анемия, агранулоцитоз, железодефицитная анемия и др.), лечении цитостатиками, заболеваниях щитовидной железы, циррозе печени, заболеваниях иммунной системы. Известны несколько врожденных форм нейтропении.

1. Синдром Костманна. Данный синдром характеризуется тем, что процесс созревания нейтрофильных гранулоцитов (т. е. зернистых лейкоцитов) замедляется (менее 100 клеток в 1 мм3), что может привести к их полному исчезновению из периферической крови.

2. Доброкачественная хроническая идиопатическая нейтропения. Эта форма обусловлена тем, что в одних случаях может протекать бессимптомно, а в других – могут отмечаться тяжелые инфекционные осложнения.

3. Гипоплазия волос – это врожденное недоразвитие волосяной луковицы, впоследствии приводящее к истончению и выпадению волос.

4. Гипоплазия Швахмана – это врожденное недоразвитие поджелудочной железы, которое сочетается с нейтропенией. Для этой формы заболевания характерны частые инфекции – воспаления легких, скопление гноя в различных тканях и органах и т. д.

Циклическая нейтропения, наследуемая по доминантному типу, может встречаться у детей. Материнские факторы, ассоциированные с нейтропенией у новорожденных, включают в себя трансплацентарный перенос IgG, выступающего против антигенов фетальных нейтрофилов и лекарственных средств (например, тиазиды), которые получала беременная.

Выработка иммуноглобулинов (IgG), которые направлены против нейтрофилов, наблюдаются при синдроме Фелти (триада: ревматоидный артрит, спленомегалия и нейтропения). Больные с синдромом Фелти, реагирующие на спленэктомию повышением количества нейтрофилов и значительным снижением уровня сывороточного IgG, дают основание предполагать, что одним из основных эффектов спленэктомии следует считать уменьшение числа антинейтрофильных антител. Лекарственные средства, вызывающие нейтропению, усиливая разрушение или отделение омертвевших нейтрофилов, по‑видимому, действуют при условии реакции сывороточных антител с препаратом (антиген), абсорбированным на нейтрофиле. Препараты, вызывающие нейтропению именно с помощью этого механизма, имеют разный скрытый период для возникновения цитотоксичности, хотя при их последующем приеме нейтропения развивается в течение нескольких часов.

Изменения структуры нейтрофилов. Морфологические изменения нейтрофильных лейкоцитов могут носить разнообразный характер: гиперсегментация, токсическая зернистость, вакуолизация цитоплазмы нейтрофилов. Гиперсегментация ядер нейтрофилов характеризуется увеличением количества сегментов в ядре. Токсическая зернистость нейтрофилов – явление, возникающее в результате воздействия на клетки инфекционного агента, который отличается крупной зернистостью в цитоплазме нейтрофилов. Появление нейтрофилов, содержащих токсическую зернистость, свидетельствует о тяжести протекающего воспалительного процесса (наблюдается при сепсисе, перитоните, массивных гнойно‑деструктивных процессах). При инфекции обнаруживаются и цитоплазматические включения, так называемые тельца Доэля, по‑видимому, представляющие собой фрагменты специальной структуры в виде сети. Клеточная дистрофия цитоплазмы нейтрофилов заключается в появлении участков «разрежения» в цитоплазме клеток, последняя приобретает решетчатый вид. Такие изменения характерны для тяжелых гнойно‑воспалительных процессов.

 

Эозинофилы

Это клетки, имеющие округлую форму, двухлопастное ядро, с заполненной специфическими эозинофильными, т. е. хорошо окрашивающимися розово‑оранжевым красителем эозином (под микроскопом они оранжевого цвета) гранулами цитоплазмой, диаметр клеток – около 12 мкм. Эозинофилы обеспечивают осуществление аллергических реакций и механизмы защиты против личиночных стадий паразитарных инфекций. Увеличение числа эозинофилов (эозинофилия) наблюдается при гельминтозах (аскаридоз, трихинеллез, энтеробиоз), аллергических реакциях (крапивница, сенная лихорадка, лекарственная и пищевая аллергия), заболеваниях системы крови (лимфогранулематоз, хронический миелолейкоз, полицитемия), бронхиальной астме, злокачественных новообразованиях. Снижение количества эозинофилов (эозинопения) встречается в начальном периоде инфекционных и воспалительных заболеваний, при гипо– и апластических анемиях (при данных анемиях происходит снижение и уменьшение числа клеток кроветворения в костном мозге).

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 857; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.