Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Где -объём параллелепипеда, построенного на векторах , и . 2 страница




.

Пересечением множеств и называется множество

.

Разностью множеств и называется множество

.

Дополнением множества (до универсального множества ) называется множество .

Два множества и называются эквивалентными и пишут ~ , если между элементами этих множеств может быть установлено взаимно однозначное соответствие. Множество называется счётным, если оно эквивалентно множеству натуральных чисел : ~ . Пустое множество по определению относится к счётным.

Понятие мощности множества возникает при сравнении множеств по числу содержащихся в них элементов. Мощность множества обозначают . Мощностью конечного множества является число его элементов.

Эквивалентные множества обладают равной мощностью. Множество называется несчётным, если его мощность больше мощности множества .

Действительным (вещественным) числом называется бесконечная десятичная дробь, взятая со знаком «+» или «». Действительные числа отождествляют с точками числовой прямой. Модулем (абсолютной величиной) действительного числа называется неотрицательное число:

Множество называется числовым, если его элементами являются действительные числа.Числовыми промежутками называются множества чисел: , , , , , , , , .

Множество всех точек на числовой прямой, удовлетворяющих условию , где - сколь угодно малое число, называется - окрестностью (или просто окрестностью) точки и обозначается . Множество всех точек условием , где - сколь угодно большое число, называется - окрестностью (или просто окрестностью) бесконечности и обозначается .

Величина, сохраняющая одно и тоже числовое значение, называется постоянной. Величина, принимающая различные числовые значения, называется переменной. Функцией называется правило, по которому каждому числу ставится в соответствие одно вполне определённое число , и пишут . Множество называется областью определения функции, - множеством ( или областью ) значений функции, - аргументом, - значением функции. Наиболее распространённым способом задания функции является аналитический способ, при котором функция задаётся формулой. Естественной областью определения функции называется множество значений аргумента , для которого данная формула имеет смысл. Графиком функции , в прямоугольной системе координат , называется множество всех точек плоскости с координатами , .

Функция называется чётной на множестве , симметричном относительно точки , если для всех выполняется условие: и нечётной, если выполняется условие . В противном случае - функция общего вида или ни чётная, ни нечётная.

Функция называется периодической на множестве , если существует число (период функции), такое, что для всех выполняется условие: . Наименьшее число называется основным периодом.

Функция называется монотонно возрастающей (убывающей) на множестве , если большему значению аргумента соответствует большее (меньшее) значение функции .

Функция называется ограниченной на множестве , если существует число , такое, что для всех выполняется условие: . В противном случае функция - неограниченная.

Обратной к функции , , называется такая функция , которая определена на множестве и каждому

ставит в соответствие такое , что . Для нахождения функции , обратной к функции , нужно решить уравнение относительно . Если функция , является строго монотонной на , то она всегда имеет обратную, при этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Функция , представляемая в виде , где , - некоторые функции такие, что область определения функции содержит всё множество значений функции , называется сложной функцией независимого аргумента . Переменную называют при этом промежуточным аргументом. Сложную функцию называют также композицией функций и , и пишут: .

Основными элементарными функциями считаются: степенная функция , показательная функция (, ), логарифмическая функция (, ), тригонометрические функции , , , , обратные тригонометрические функции , , , . Элементарной называется функция, полученная из основных элементарных функций конечным числом их арифметических операций и композиций.

Если задан график функции , , то построение графика функции сводится к ряду преобразований (сдвиг, сжатие или растяжение, отображение) графика :

1) преобразование симметрично отображает график , относительно оси ; 2) преобразование симметрично отображает график , относительно оси ; 3) преобразование сдвигает график по оси на единиц ( - вправо, - влево); 4) преобразование сдвигает график по оси на единиц ( - вверх, - вниз); 5) преобразование график вдоль оси растягивает в раз, если или сжимает в раз, если ; 6) преобразование график вдоль оси сжимает в раз, если или растягивает в раз, если .

Последовательность преобразований при построении графика функции можно представить символически в виде:

.

Примечание. При выполнении преобразования следует иметь в виду, что величина сдвига вдоль оси определяется той константой, которая прибавляется непосредственно к аргументу , а не к аргументу .

Графиком функции является парабола с вершиной в точке , ветви которой направлены вверх, если или вниз, если . Графиком дробно-линейной функции является гипербола с центром в точке , асимптоты которой проходят через центр, параллельно осям координат.

В некоторых случаях при построении графика функции целесообразно разбить её область определения на несколько непересекающихся промежутков и последовательно строить график на каждом из них. Например, при построении графика функции, в аналитическое выражение которой входит функция , следует выделить и рассмотреть отдельно промежутки, на которых выражение под знаком модуля не меняет знак.

График функции можно построить, предварительно построив графики функций и , а затем сложив их ординаты при одинаковых значениях .

Тема 8. Предел функции. Эквивалентные функции.

Число называется пределом функции при (или в точке ), и пишут , если для любого числа найдётся число такое, что при всех , удовлетворяющих условию , выполняется неравенство .

Число называется пределом функции при , и пишут , если для любого числа найдётся число такое, что при всех , удовлетворяющих условию , выполняется неравенство .

Рассматривают также односторонние пределы функций: , , , , где стремится к , , или только с левой стороны или только с правой стороны.

Основные утверждения, используемые для вычисления пределов функций при (в дальнейшем - или число или символ ):

1) Если - постоянная величина, то .

2) Если существуют конечные пределы , , то:

а) ; б) ;

в) ; г) , если .

При вычислении пределов постоянно пользуются и тем, что для любой основной элементарной функции и точки из её области определения справедливо соотношение .

Функция называется бесконечно большой при , если . Функция называется бесконечно малой при , если .

Основные утверждения для бесконечно больших функций, используемые для вычисления пределов при :

1) Если , то ,если , то

2) Если и , то .

3) Если и , то .

4) Если и , то .

5) Если и , то .

6) Если и , то .

Если непосредственное применение свойств конечных пределов и бесконечно больших функций приводит к неопределённым выражениям, символически обозначаемым: , то для вычисления предела – «раскрытия неопределённости» - преобразовывают выражение так, чтобы получить возможность его вычислить.

Первым замечательным пределом называется предел: . Следствиями из него являются пределы:




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.091 сек.