Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Законы старения




Законы состояния

Как физические законы, так и полученные на их основе частные зависимости, описывающие изменение свойств и состояния материалов, можно разделить на две ос-новные группы.

Во-первых, это закономерности, описывающие взаимосвязи обратимых процес-сов, когда после прекращения действия внешних факторов материал (и соответственно деталь) возвращается в исходное состояние. Эти зависимости называются законами со-стояния.

Во-вторых, имеются закономерности, которые описывают необратимые процес-сы и, следовательно, позволяют оценить те изменения начальных свойств материалов, которые происходят или могут происходить в процессе эксплуатации изделия. Эти за-висимости называются законами старения.

Законы состояния можно разделить на статические, когда в функциональную зависимость, описывающую связь между входными и выходными параметрами, фактор времени не входит, и на переходные процессы, где учитывается изменение выходных параметров во времени.

Типичными примерами статических законов состояния могут служить закон Гу-ка, закон теплового расширения твердых тел и др. На основании этих законов получе-ны расчетные зависимости для решения различных инженерных задач.

Статические законы, описывающие изменения состояния изделия, хотя и не включают фактор времени, но могут быть использованы для расчетов надежности, ес-ли известны изменения характеристик изделия в процессе эксплуатации.

Законы состояния, описывающие переходные процессы, например колебания упругих систем, процессы теплопередачи и другие, хотя и включают фактор времени, но также не учитывают изменений, происходящих при эксплуатации изделий. Обычно они относятся к категории быстропротекающих процессов или процессов средней ско-рости. Лишь при известном изменении уровня внешних воздействий их можно исполь-зовать для решения задач надежности.

Основное значение для оценки потери изделием работоспособности имеет изу-чение законов старения, которые раскрывают физическую сущность необратимых из-менений, происходящих в материалах изделия. Хотя законы старения всегда связаны с фактором времени, в некоторых из них время непосредственно не фигурирует, так как в полученных зависимостях отыскивается связь с другими факторами (например, энер-гией), которые, в свою очередь, проявляются во времени. Такие зависимости будем на-зывать законами превращения.

Типичным примером законов превращения могут служить зависимости, описы-вающие процессы коррозии. Вывести закономерности, непосредственно отражающие изменение величины коррозии во времени, трудно: во-первых, в результате поливари-антности коррозийных процессов, когда большое число факторов оказывает одновре-менно и часто противоположное действие на интенсивность повреждения, и во-вторых, коррозия может быть не только равномерно распределенной по поверхности металла


(например, в виде окисной пленки), но и носить локальный характер (местная корро-зия) или проявляться в виде межкристаллитной коррозии.

Для оценки возможности возникновения и интенсивности коррозионного про-цесса применяют законы химической термодинамики.

Применение физико-химических закономерностей для оценки интенсивности протекания процессов химической коррозии является типичным подходом к анализу сложных явлений старения и разрушения материалов.

Хотя для прогноза поведения изделия при эксплуатации и для выбора оптималь-ных решений желательно было бы иметь непосредственные зависимости протекания данного процесса старения во времени, сложность явления не позволяет на данном эта-пе получить эту закономерность.

Поэтому используются, физические и химические законы, отражающие наибо-лее существенные стороны процесса и показатели, по которым можно косвенно судить об интенсивности процесса.

Законы старения, оценивающие степень повреждения материала в функции времени, являются основой для решения задач надежности. Они позволяют прогнози-ровать ход процесса старения, оценивать возможные его реализации и выявлять наибо-лее существенные факторы, влияющие на интенсивность процесса. Типичным приме-ром таких зависимостей являются законы износа материалов, которые на основе рас-крытия физической картины взаимодействия поверхностей дают методы для расчета интенсивности процесса изнашивания или величины износа в функции времени и оце-нивают параметры, влияющие на ход процесса.

Многие временные закономерности физико-химических процессов могут быть получены на основе рассмотрения кинетики термоактивационных процессов. Измене-ние свойств твердых тел происходит в результате перемещений и перегруппировок элементарных частиц (атомов, молекул, электронов, протонов и др.), изменения их по-ложения в кристаллической решетке.

Это относится к той небольшой части элементарных частиц, энергия.которых превосходит некоторый уровень, который называется энергией активации Е а. Скорость данного процесса тем больше, чем большее число частиц обладает энергией выше, чем энергия активации.

Любой процесс старения возникает и развивается лишь при определенных внеш-них условиях. Для оценки возможных видов повреждения материалов деталей машин необходимо установить область существования процесса старения и в первую очередь условия его возникновения. Для возникновения процесса обычно должен быть пре-взойден определенный уровень нагрузок, скоростей, температур или других парамет-ров, определяющих его протекание. Этот начальный уровень или порог чувствительно-сти особенно важно знать для быстропротекающих процессов старения, когда после возникновения процесса идет его интенсивное лавинообразное развитие. Часто порог чувствительности связывают с некоторым энергетическим уровнем, который определя-ет начало данного процесса. Например, энергия активации E а определяет энергетиче-ский уровень, начиная с которого может идти процесс изменения свойств материала.

Энергетическая концепция лежит в основе теории возникновения трещин в ме-таллических конструкциях при средних напряжениях, остающихся ниже предела теку-чести.





Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 847; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.