Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Преимущества подсетей




Маски подсетей

При использовании подсетей внешним машинам надо знать только адрес шлюза всей сети организации. Маршрутизация внутри сети - это её внутреннее дело.

При разбиении сети на подсети используют ту часть IP-адреса, которая закреплена за номерами рабочих станций. Администратор сети может замаскировать часть IP-адреса и использовать его для назначения номеров подсетей.

Маска подсети это 4 байта, которые накладываются на IP- адрес для получения номера подсети. Например, маска 255.255.255.0 позволяет разбить сеть класса В на 254 подсети по 254 узла в каждой.

Рассмотрим пример 1: выделим в качестве дополнительного бита для адресации сети класса С первый бит из последнего октета. Теперь для правильной адресации ПК в сети необходимо об этом выделении сообщить. Это делается с помощью введения маски подсети (которая устанавливается при инсталляции протокола TCP/IP в сети). Если указывается маска подсети 255.255.255.128 (11111111 11111111 11111111 10000000), то это значит, что для адресации сети в рассматриваемом IP-адресе надо взять дополнительно первый бит в последнем октете.

Если для адресации сети нужно выделить два первых бита в последнем октете, то маска подсети будет 255.255.255.192, т. е. 11111111 11111111 11111111 11000000.

Если маска задана 255.255.255.0 (11111111 11111111 11111111 00000000), то адрес сети определяется традиционно по первым трем октетам.

Пример 2:

Пусть маска подсети 255.255.255.128, тогда будем иметь:

 

Номер сегмента сети Адрес сети Адрес узлов (хостов)
первый сегмент 192.168.004 001 – 127
второй сегмент 192.168.004 128 – 254

 

Получили две подсети по 127 номеров в каждой (всего 254 номера, т. к. номера 0 и 255 не используются – это резерв). Иначе пришлось бы выделять для двух этих подсетей вдвое больше номеров (т. е. надо было бы выделить 192.168.004 и 192.168.005).

Стандартная маска для класса С – это маска 255.255.255.0

Маска подсети обрабатывается маршрутизаторами.

 

Алгоритм обработки маски подсети маршрутизатором

Ранее маршрутизатор проверял, не совпадает ли адрес сети полученного IP-адреса с адресом какой-либо непосредственно подсоединенной к маршрутизатору сети. Теперь маршрутизатор использует маску подсети, чтобы выделить адрес сети получателя. При этом выполняется побитовая операция И для маски подсети и IP-адреса.

Если полученный в результате адрес не совпадает с адресом подсети, то пакет направляется на другой маршрутизатор, который делает аналогичные операции.

 

 

1. Рациональное использование IP-адресов.

2. Возможность применения разных методов доступа в разных сегментах одной сети (например, Ethernet и Token Ring).

3. Преодоление ограничений на максимальное количество узлов в сети (например, в Ethernet (тонкий) может быть не более 30 РС).

4. Взаимодействие физически различных сетей в рамках Internet.

 

Если данная ЛВС не подключена к Internet, то её не нужно разбивать на подсети, т. к. можно использовать все адреса TCP/IP.

Также можно не создавать подсети, если сеть соединена с Internet через Proxy-сервер или Firewall (брандмауэр). Эти устройства скрывают внутреннюю структуру сети и обслуживают передачу информации через один IP-адрес. Тем более каждый пакет, покидающий сеть, воспринимается как пришедший непосредственно с Proxy-сервера, а не от узла, который его отправил. Proxy-сервер сам заботится о распределении пакетов нужным узлам.

Известно, что Internet исчерпала собственное адресное пространство. Эта проблема вызывает беспокойство у исследователей, производителей и поставщиков услуг.

Суть втом, что IPv4, нынешний стандарт протоколаInternet, ограничивает допустимое число адресов Internet четырьмя миллиардами.

Все популярнее становятся телефоны и другие интеллектуальные устройства персональной электроники с доступом в Internet, и для них требуются постоянные IP-адреса.

Новый стандарт для IP-адресовIPv6 существует с 1997 года, он постоянно совершенствуется рабочей группой Internet Engineering Task Force. Привлекательность нового стандарта заключается в том, что в отличие от предыдущей и ныне действующей версии Ipv4 c его 32-разрядной адресацией, Ipv6 использует 128-разрядную схему формирования IP- адресов. Новый стандарт ускоряет процесс маршрутизации пакетов, а также обеспечивает встроенные в нем средства аутентификации и шифрования пакетов.

 

6.1.3.Развитие стека TCP/IP: протокол IPv.6

Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.

Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.

· Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.

· Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, MPLS уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.

· Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным. Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.

· Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.

Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.

Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.

В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.

· Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.

· Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.

· Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.

· Поддержка расширяемости протокола. Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 1497; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.