Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 4.4. Защита мощных транзисторов от короткого замыкания нагрузки




 

Для мощных транзисторов очень опасно замыкание входа.

При нормальной работе транзистора мощность, потребляемая от источника, распределяется между нагрузкой и коллекторным переходом, а в случае короткого замыкания нагрузки вся потребляемая мощность приходится на коллекторный переход, что может вывести транзистор из строя. В режиме В среднее значение тока, и, следовательно, потребляемой мощности пропорционально амплитуде сигнала, поэтому в случае короткого замыкания наибольшая мощность на коллекторе выделяется в номинальном режиме. Защитить транзистор предохранителем нельзя, так как транзистор сгорит быстрее, поскольку теплоемкость кристалла мала.

При этом внешних признаков перегрева нет – корпус транзистора остается холодным.

Перегрузка может быть вызвана не только коротким замыканием нагрузки, но и повышением питающего напряжения, уменьшением сопротивления нагрузки Rн или подачей на вход усилителя сигнала с частотой 15-20 Гц. Для защиты транзистора используют электронные схемы, которые срабатывают мгновенно и отключают или понижают питающее напряжение, снимают или уменьшают уровень входного сигнала или одновременно и то и другое. Чаще это схемы, которые автоматически отключают источник питания от оконечного усилителя в момент перегрузки или снимают входной сигнал с оконечного каскада. Питание или сигнал могут отключаться не полностью, а только снижаться, чтобы ток оконечных транзисторов остался номинальным. Возможны и комбинированные схемы защиты, когда ток мощных транзисторов снижается за счет уменьшения входного сигнала и одновременно понижается питающее напряжение.

Рассмотрим схему защиты оконечного каскада «Звук Т» (рис. 37) для одного плеча.

Оконечный каскад – двухтактный бестрансформаторныйна составных транзисторах. Источник входного сигнала – предоконечный каскад (на схеме он показан эквивалентным генератором с внутренним сопротивлением Ruc). Транзистор защиты VТзащ включается параллельновходу плеча схемы оконечного каскада. Его

Рис.36 Схема защиты мощных транзисторов от короткого замыкания нагрузки

промежуток коллектор – эмиттер вместе с сопротивлением Ruc образуют делитель входного сигнала.

При нормальной работе транзистор защиты закрыт, и сигнал с предоконечного каскада полностью поступает на базу входного плеча.В нерабочий полупериод входного сигнала, когда транзисторы верхнего плеча закрыты и на базе отрицательная полуволна, диод VД1 закрыт, потенциал его анода ниже катода, и он отключает транзистор защиты от входа данного плеча. В случае короткогозамыкания нагрузки схема отключает транзистор защиты, его сопротивление уменьшается, он шунтирует вход и входной сигнал резко уменьшается. Это, в свою очередь, ограничивает ток оконечных транзисторов, снижает потребляемую ими мощность и мощность, выделяемую на коллекторе. Элементы Rэ, R1, R2 с диодом VД2 и сопротивлением нагрузки Rн образуют плечи мостовой схемы. В одну его диагональ (эмиттер – земля, Э-з) подается выходное напряжение транзистора VТзащ - оно включает в себя падение напряжения на Rэ и выходное напряжение на нагрузке Rн. В другую диагональ (а - б) включен эмиттерный переход транзистора защиты. При нормальнойработе мост сбалансирован, что достигается подбором параметров его элементов, при этом между точками а –б нет разности потенциалов, а значит нет прямого напряжения между выводами Э – Б VТзащ, и он закрыт. В случае короткого замыкания баланс моста нарушается, понижается потенциал точки (а) – Э, на эмиттерном переходе VТзащ появляется прямое напряжение, он открывается и шунтирует вход, снижая входной сигнал. Схема защиты верхнего плеча срабатывает в положительный полупериод входного сигнала, а в отрицательный она отключается диодом VД1, а срабатывает аналогичная схема нижнего плеча.

 

 

Недостатки схемы:

Низкая чувствительность и высокий уровень ограничения тока. Поэтому недопустима длительная работа устройства в режиме короткого замыкания и его следует перевести на резервный блок. Схемы защиты понижают экономичность устройства, поэтому применять их следует только в усилителях большой мощности (25 – 100 Вт). В маломощных усилителях достаточно включить последовательно в цепь входа резистор, который предотвратит полное короткое замыкание выхода и ограничит выходной ток.

 

Контрольные вопросы:

1. Какие требования предъявляются к оконечному каскаду?

2. Дать характеристики режимов работы оконечных каскадов;

3. Назначение выходного трансформатора в оконечном каскаде;

4. Принцип работы, назначение элементов схем оконечных каскадов. Свойства схем оконечных каскадов;

5. Объяснить работу схемы смещения и стабилизации режима в оконечных каскадах;

6. Объяснить работу схемы защиты оконечных каскадов от короткого замыкания нагрузки.

Раздел 5. ПРЕДОКОНЕЧНЫЕ КАСКАДЫ

Назначение предоконечного каскада состоит в том, чтобы его выходным сигналом привести в действие оконечный каскад. Поэтому основные требования к нему - большая амплитуда неискаженного выходного сигнала и малое выходное сопротивление. В зависимости от схемы оконечного каскада драйвер должен развивать выходное напряжение однофазное, двухфазное или два отдельных, противоположных по фазе сигнала, не имеющих общей точки. Однофазный сигнал получают обычно от резисторного каскада с ОЭ, а противофазные получают от трансформаторного каскада или специального фазоинверсного каскада.

Рассмотрим некоторые из схем предоконечных каскадов.

 




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 874; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.