Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производные высших порядков




Применение дифференциала для приближенных вычислений.

6).

Основные свойства дифференциала

.

.

Понятие дифференциала.

Пусть функция имеет в точке конечную производную , тогда ее приращение можно записать в виде

,

где .

Главная, линейная относительно часть приращения функции называется дифференциалом функции и обозначается :

При , получим , поэтому дифференциал функции примет вид

1) где = const,

2)

3) ,

4) ,

5)

При достаточно малых приращение функции приближенно равно ее дифференциалу, т. е. и

.

 

Пример 9. Найти дифференциал функции .

Решение. Найдем производную данной функции .

Следовательно, по определению дифференциала функции получим

.

Пример1 0. Вычислить с помощью дифференциала приближенное значение

Решение. Рассмотрим функцию . Пологая и применяя формулу , получим

.

 

Производной второго порядка (второй производной) функции называется производная от производной . Вторая производная обозначается так: , или , или .

Если - закон прямолинейного движения точки, то вторая производная пути по времени есть ускорение этого движения.

Аналогично производная третьего порядка функции есть производная производной второго порядка и т.д., производной n -го порядка от функции называется производная от производной -го порядка . Обозначается n -я производная так: или , или .

Пример 10. Дана функция .

Найти: , , ,…




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 424; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.048 сек.