Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фотоэлементы с внутренним фотоэффектом




(полупроводниковые фотоэлементы)

 

Фотосопротивление. Действие его основано на явлении фотопроводимости. На рис.9.2 показано включение фотосо­противления в электрическую цепь. Без освещения фотосопротивления ток в цепи практи­чески отсутствует, при освещении ток возрастает в тысячи раз.

Рис. 9.2

Фотосопротивления обладают чув­ствительностью в сотни и тысячи раз большей, чем фотоэлементы с внешним фотоэффектом. Кроме того, они имеют широкий диапазон спектральной чув­стви­тельности: от инфракрасных до рент­ге­нов­ских и g - лучей. Недостатками их являются значительная инер­ционность и зависимость свойств от температуры.

Вентильные фотоэлементы (фотоэлементы с запирающим слоем).

В вентильных фотоэлементах используется фотогальванический эффект (разновидность внутреннего фотоэффекта). В отличие от других фотоэлементов, вентильные фотоэлементы не требуют при работе источника тока, так как сами являются таким источником.

 

Вольт-амперные и люкс-амперные характеристики фотоэлементов

 

 
 


Вольт-амперной характеристикой фотоэлемента называется кривая, выражающая зависимость фототока от напряжения. На рис. 9.3 показана вольт - амперная характеристика вакуумного фотоэлемента. Она отличается двумя особенностями:

а) при увеличении напряжения U между анодом и катодомфототок IФ достигает насыщения (с увеличением освещенности ток насыщения возрастает);

б) существует такое зна­чение задерживающей разности потенциалов Uз , при котором фототок прекращается. Электроны перестают достигать анода, когда работа задерживающего электрического поля становится равной их начальной кинетической энергии: ,

где е, m и v - это заряд, масса и скорость электрона соответственно.

Вольт - амперные характеристики фотосопротивлений имеют линейный характер.

Люкс-амперной (или световой) характеристикой фотоэлемента называется зависимость фототока от освещенности катода при постоянном напряжении. У вакуумных фотоэлементов световая характеристика линейна, так как число выбитых электронов в единицу времени nпропорционально освещенности (Iн = е n ~ E).

Световая характеристика фотосопротивлений имеет нелинейный характер.

Применение фотоэлементов

Фотоэлементы используются в технике и в научных исследованиях. Например, они применяются в звуковом кино для воспроизведения звука, для сигнализации, в телевидении, автоматике и телемеханике. Фотоэлементы позволяют управлять на расстоянии процессами производства. При нарушениях хода процесса изменяется поток света, попадающего на фотоэлемент, и создается ток, выключающий весь процесс. С помощью фотоэлементов измеряются весьма слабые световые потоки (например, в биологии, астрофизике), регистрируются инфракрасные спектры, осуществляется фотографирование в темноте и т.д.



Вентильные фотоэлементы используются для изготовления “солнечных” батарей, преобразующих энергию Солнца в электрическую. Кремневые “солнечные” батареи применяются, например, для питания аппаратуры на искусственных спутниках Земли и автоматических межпланетных станциях.

Фотоэлементы могут быть использованы для измерения освещенности рабочих мест. Приборы, служащие для измерения освещенности, называются люксметрами.

 

Выполнение работы

 

1. Ознакомиться с имеющимися на лабораторном столе приборами.

2.Снять вольт-ампернуюхарактеристику вакуумного фотоэлемента (СЦВ-4):

2.1. Поместив фотоэлемент СЦВ-4 на оптическую скамью, собрать электрическую цепь по рис.9.4.

2.2. Подать напряжение сети на выпрямитель и источник света.

 

Рис. 9.4

Изменяя напряжение U, подаваемое на фотоэлемент, от 0 до 120-150 В, снять зависимость (7-10 точек) силы фототока Iфот напряжения для двух расстояний r1 и r2 фотоэлемента от источника света. Результаты измерений занести в табл. 1.

П р и м е ч а н и е. Расстояния r1 и r2 необходимо подбирать такими, чтобы шкала миллиамперметра использовалась как можно полнее. Фототок можно измерять в относительных единицах (в делениях шкалы прибора).

Таблица 1

Номер U, В Iф, А
измерения   r1 = r2 =
. .      

 

2.3. По измеренным данным построить графики Iф = f (U).

3. Снять люкс-амперную характеристику:

3.1. При постоянном напряжении (U = cоnst) снять зависимость силы фототока Iфот освещенности Е фотоэлемента. Так как освещенность обратно пропорциональна квадрату расстояния r , то изменять ее можно путем изменения r. Результаты измерений занести в табл. 2.

П р и м е ч а н и е. U = сonst должно быть подобрано так, чтобы r можно было менять в широком пределе.

3.2. По данным табл. 2 построить график Iф = f (E) = f (1 / r2).

4. Снять характеристики фотосопротивления:

Таблица 2

Номер U, B =
измере-ния r Iф, А E = 1/r2
. . .      

 

4.1. Выключить выпрямитель. На место фотоэлемента подключить в цепь фотосопротивление, установив его на оптическую скамью. По аналогии с пп. 2,3 снять однувольт-амперную и одну люкс-амперную кривые для фотосопротивления. Результаты занести в таблицы, аналогичные табл. 1 и 2.

4.2. По измеренным данным построить графики Iф= f (U), Iф =f (E).

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Понятие о квантовых свойствах света. Энергия кванта света.

2. Явление внешнего фотоэффекта и его закономерности.

3. Внутренний фотоэффект и его объяснение на основе зонной теории строения вещества.

4. Уравнение Эйнштейна для внешнего фотоэффекта, его физический смысл.

5. “Красная граница” фотоэффекта.

6. Объяснение закономерностей фотоэффекта на основе квантовой природы света

7. Вольт-амперные и люкс-амперные характеристики вакуумного и газонаполненного фотоэлементов.

8. Зависимость тока насыщения фотоэлементов от освещенности.

9. Задерживающая разность потенциалов и ее связь с кинетической энергией электрона, вылетевшего из катода в результате фотоэффекта.

10. Зависимость проводимости фотосопротивления от освещенности.

11. Вольт-амперная и люкс-амперная характеристики фотосопротивления.

 

 

ПРИЛОЖЕНИЯ

 





Дата добавления: 2014-12-16; Просмотров: 424; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.81.152.30
Генерация страницы за: 0.092 сек.