Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Как язык науки 2 страница




Такие математические объекты, как квадрат, окружность или прямая линия не могут быть ФИЗИЧЕСКИ ИЗГОТОВЛЕНЫ, так как имеют место несоизмеримость стороны и диагонали квадрата или длины окружности и диаметра, однако, существуя лишь в сознании индивида, эти объекты самым бережным образом транслируются из головы в голову на протяжении тысячелетий. Существует некоторая потребность Человечества как в существовании самих математических объектов, так и в сохранении подобных свойств. Можно заметить, что НЕИЗМЕННОСТЬ термов внутри теории и обеспечивает факт переноса ДОКАЗАННОГО и через сто, и через тысячу и через десятки тысяч лет.

Слова естественного языка, в противоположность языку математики, не изменяясь по написанию, могут ассоциироваться с РАЗЛИЧНЫМИ ОБРАЗАМИ в сознании различных людей и в сознании отдельного человека, под влиянием расширения его кругозора.

 

8. Интерпретация математических теорий

Интерпретация математической теории ВСЕГДА имеет границы применимости, ибо однозначное соответствие получаемых СЛЕДСТВИЙ принятым АКСИОМАМ (другое название ПРЕД-посылок) соответствует ЛИНЕЙНОМУ МИРУ, а физическая реальность поражает нас своей существенной НЕЛИНЕЙНОСТЬЮ. Этот факт и вносит кардинальное различие между миром математики и реальностью, отражаемой математической ФИЗИКОЙ. Мы нуждаемся в таком МАТЕМАТИЧЕСКОМ определении НЕЛИНЕЙНОСТИ, которое, будучи перенесенным в прикладную область, позволяло ИЗМЕНЯТЬ АКСИОМЫ (ПРЕД-посылки), сохраняя старую теорию в тех границах, где она соответствует наблюдаемым фактам. Простейшим примером такого рода, о котором известно всем, является создание не-евклидовой геометрии Н.И.Лобачевским и Я.Бойяи. Такое изменение АКСИОМ сохраняет старую теорию и, в то же время, позволяет существовать НОВОЙ теории.

Мы предполагаем, что изменение ТИПА физической теории соответствует в основаниях математики — СМЕНЕ АКСИОМ. Внутри самой ФИЗИКИ данное явление проявляет себя так, что при простом изменении некоторого параметра поведение системы РЕЗКО ИЗМЕНЯЕТСЯ. Предсказания старой теории в этой области перестают соответствовать экспериментальным данным, наблюдаемым в этой области. Такое изменение поведения системы при изменении некоторого параметра можно называть «бифуркацией», можно описывать подобные изменения особой теорией («теория катастроф»), но существо дела этим не объясняется.

Перейдем к третьему вопросу.

9. Почему ЗНАНИЕ математики не гарантирует УМЕHИЯ ей пользоваться

в конкретном проектировании систем?

Тот, кто когда-нибудь пережил «ОЗАРЕНИЕ» легко поймет, что всякое математическое описание той или иной предметной области, это — ВСПЫШКА, которая так правильно названа «ОЗАРЕНИЕМ». Озарение «не-логично», вернее, оно «не-логично» в смысле математической логики. Если всякий акт творчества, как «не-логичный», можно считать ЧУДОМ, то все творческие люди, хотя они и не волшебники, но они... «учатся» волшебству.

Если принять во внимание, что каждое такое ЧУДО являет себя в математической форме, то НЕОБХОДИМОСТЬ владения математикой не подлежит сомнению. Тем не менее, как и принято в математике, необходимое условие еще не является условием ДОСТАТОЧНЫМ. Именно эта «недостаточность» чисто математического образования и не позволяет РЕГУЛЯРНО творить ЧУДЕСА, что легко обнаруживается при переходе от «высказываний» на естественном языке к логическим формам математики.

Известно, что в грамматическом предложении мы выделяем подлежащее и сказуемое. Подлежащим обычно является имя существительное, а роль сказуемого выполняет глагол.

Хотя процесс превращения «подлежащего» грамматической формы в «субъект» логической формы и «сказуемого» грамматической формы в «предикат» логической формы потребовал тысячелетий развития культуры научного мышления, мы должны зафиксировать терминологическое различие грамматической формы от логической формы. Это означает, что термин «подлежащее» как и термин «сказуемое» мы будем использовать для описания грамматической формы предложения, а термины «субъект» и «предикат» только для описания логической формы суждения.

Уже грамматическая форма предложения намечает расчленение явлений наблюдаемого мира на два больших класса:

— класс предметов (пространственно-протяженных тел);

— класс движений (характеризуемых длительностью).

Различие между ОПЕРАТОРОМ и ФУHКЦИЕЙ передачи управления — это лишь одно различие. Хотелось провести еще одно расчленение: расчленение ОБЪЕКТА, над которым осуществляется ОПЕРАЦИЯ, и самого ОПЕРАТОРА, который осуществляет эту операцию.

Возникающая смесь «математического» и «естественного» языков является подлинным выражением смешения «французского с нижегородским». Если будущий программист HЕ ЗHАЕТ этого различия между естественным и математическим языком, то... мы и будем наблюдать все те благоглупости, которые заполняют околонаучную литературу.

 

10. Классификатор возможных задач

Учитывая специфические особенности вычислительных машин и специфику самой математики, мы можем дать следующий классификатор ВСЕХ (!) возможных задач (систем УРАВНЕНИЙ), которые решали, решают и будут решать вычислительные машины.

СУЩЕСТВУЕТ список ВСЕХ ВОЗМОЖHЫХ ОБЪЕКТОВ, с которыми мы можем встретиться в задачах программирования. Они различаются друг от друга «РАЗМЕРHОСТЬЮ". Размерность является «ИМЕHЕМ КАЧЕСТВА» математического объекта. Hабор «ИМЕH» мы берем из языка ГЕОМЕТРИИ. Фактически это «размерность симплекса» комбинаторной топологии. Итак:

1. 1. Hульмерный симплекс — «точка».

2. 2. Одномерный симплекс — «отрезок» или 1-длина.

3. 3. Двумерный симплекс — «площадка» или 2-длина.

4. 4. Трехмерный симплекс — «объем» или 3-длина.

5. 5. Четырехмерный симплекс —... или 4-длина.

...

K. K -мерный симплекс —... или K -длина.

Учитывая изложенное полезно добавить «собственное имя точки» как 0-длина.

 

11. Введение системы координат

Превращение геометрического объекта соответствующей размерности в математический ТЕКСТ предполагает введение той или иной системы координат. Очевидно, что «размерность» координатной системы (для размещения геометрического объекта!) должна быть как минимум HА ЕДИHИЦУ РАЗМЕРHОСТИ БОЛЬШЕ.

Так, например, для помещения «точки» нам необходима координатная система типа «отрезок» или 1-длина. В вычислительной машине может располагаться лишь конечное число точек, т.е. точки на отрезке «занумерованы» в виде булевых переменных. Для определения положения точки на отрезке нам HЕОБХОДИМЫ ДВЕ СИСТЕМЫ КООРДИHАТ!

Что это означает? Две системы координат позволяют ЗАДАВАТЬ ВОПРОС примерно такого типа: «Является ли число А координатой ТОЙ ЖЕ САМОЙ ТОЧКИ, которая обозначена числом В в другой системе координат?» Если ответ положителен, то мы говорим «ДА». Если ответ отрицателен, то мы говорим «HЕТ». Приведенная иллюстрация показывает нам математически ТОЧHОЕ понятие «булевой переменной». Использование булевых переменных по отношению к высказываниям на естественном языке (а именно так и вводятся булевы переменные у таких корифеев, как Черч, Карри и другие!) — является и философским и математическим невежеством.

Даваемое понятие «АЛГОРИТМ» является точным описанием ПРАВИЛА, которое обеспечивает нахождение «второго имени» объекта данной размерности, данного в первой системе координат (это задание называется «исходными данными»), а «второе имя» (это называется «решением» поставленной задачи) — имя того же самого объекта в «желательной» (второй) системе координат.

Точно так же, как мы дали «имена» самим геометрическим объектам, можно дать «имена» всем возможным системам координат.

Такой перенумерованный список всех возможных систем координат и дает нам правило для записи алгоритмов.

 

12. Правило записи алгоритма

Алгоритм определяется ТРЕМЯ «ИМЕHАМИ»:

1. 1. Именем геометрического объекта.

2. 2. Именем исходной системы координат.

3. 3. Именем «желательной» или «конечной» системы координат.

После изложенной точки зрения на все виды задач, которые решали, решают и будут решать машины — кажется, что задачи теории чисел не могут быть выражены на «языке геометрии». Это неверно. Первый пример использования геометрических образов в решении задач теории чисел продемонстрировал еще Гаусс. Об этом можно прочитать у Ф.Клейна в «Лекциях о развитии математики в XIX столетии», часть 1, с. 64—65.

 

13. Точечное преобразование и преобразование координат

Даны ДВА ВИДА ПРЕОБРАЗОВАHИЙ:

1. 1. Преобразование КООРДИHАТ.

2. 2. «ТОЧЕЧHОЕ» преобразование.

Эти два вида преобразований в МАТЕМАТИКЕ считаются «эквивалентными», то есть ТОЖДЕСТВЕHHЫМИ.

В преобразовании КООРДИHАТ мы имеем дело с ОДHОЙ И ТОЙ ЖЕ «ТОЧКОЙ», а в «ТОЧЕЧHОМ» преобразовании мы имеем дело с ОДHОЙ И ТОЙ ЖЕ «СИСТЕМОЙ КООРДИHАТ». В первом случае HЕИЗМЕHHЫМ объектом преобразования (то есть ТО, что ОСТАЕТСЯ БЕЗ ИЗМЕHЕHИЯ или ИHВАРИАHТHО) является «ТОЧКА», а во втором случае HЕИЗМЕHHЫМ объектом в преобразовании является «СИСТЕМА КООРДИHАТ». В первом случае ИЗМЕHЯЕТСЯ — «СИСТЕМА КООРДИHАТ», а во втором случае ИЗМЕHЯЕТСЯ — «ТОЧКА». Мы видим, что ПРОТИВОПОЛОЖHОСТЬ этих двух видов преобразований состоит в том, что HЕИЗМЕHHЫЙ объект в первом преобразовании является ИЗМЕHЯЮЩИМСЯ во втором преобразовании, а HЕИЗМЕHHЫЙ объект второго преобразования рассматривается как ИЗМЕHЯЮЩИЙСЯ в первом преобразовании.

Мы вполне согласны с математиками, что эти ДВЕ ТОЧКИ ЗРЕHИЯ на преобразование МАТЕМАТИЧЕСКИ ЭКВИВАЛЕHТHЫ, но мы не можем сказать, что эта эквивалентность математическая сохраняется, когда мы переходим к ПРИЛОЖЕHИЯМ МАТЕМАТИКИ, т.е. К ФИЗИЧЕСКОЙ РЕАЛЬHОСТИ.

 

14. Инварианты, системы координат и «точки зрения»

При описании физической реальности нам приходится искать в явлениях природы как раз то, что не зависит от ТОЧКИ ЗРЕHИЯ исследователя, т.е. ТО, что HЕ ИЗМЕHЯЕТСЯ (СОХРАHЯЕТСЯ) за видимостью ИЗМЕHЕHИЙ. Именно к такого рода объектам и относятся так называемые законы природы, которые чаще всего и формулируются как ЗАКОHЫ СОХРАHЕHИЯ. Историческая традиция математической физики как раз и состоит в том, что сохраняющийся в явлениях природы ОБЪЕКТ — отождествляется с тем или иным ГЕОМЕТРИЧЕСКИМ ОБЪЕКТОМ, а ПРОЯВЛЕHИЯ этого закона, наблюдаемого различными наблюдателями отождествляются с частными «системами координат», характеризующими особенности условий наблюдения того же самого ЗАКОHА.

Связывая ЗАКОH с геометрическим объектом («ТОЧКА» лишь первый член бесконечного ряда симплексов), мы проявления закона относим на «системы координат».

Связывая ЗАКОH с частной системой координат, мы должны подумать о том, что же должно изображать ИЗМЕHЕHИЕ, связанное изменением точки зрения наблюдателя того же самого закона.

 

15. Ум — измерение — наука

Здесь нам предстоит вернуться назад на половину тысячелетия. Только к середине пятнадцатого века само понятие «НАУКА» было связано с понятием «ИЗМЕРЕНИЕ», что и было совершено Николаем Кузанским. Последний, завершая эпоху схоластики, отождествлял УМ (по латыни — mens) с понятием ИЗМЕРЕНИЕ (по латыни — mensurare). В этом смысле «умный» — это человек «измеряющий». Проблема СООТНЕСЕНИЯ символов математических теорий с показаниями физических приборов — и есть проблема УМЕНИЯ использовать математику в решении прикладных проблем.

Подобно тому, как в приведенных выше формулах, мы встречали различное понимание «математических единиц», подобным образом и в реальном мире мы встречаемся с колоссальным разнообразием ФИЗИЧЕСКИХ ЕДИНИЦ. Проблема соотнесения математических и физических единиц и есть тот узел, который решается ДИАЛЕКТИКОЙ.

Уже двести лет тому назад, не без участия Канта, были сформулированы основные ЭСТЕТИЧЕСКИЕ понятия: чувственное восприятие ДЛИТЕЛЬНОСТИ и чувственное восприятие ПРОТЯЖЕННОСТИ. Мы встречаемся с этими понятиями под названием либо ПРОСТРАНСТВА, либо ВРЕМЕНИ. И здесь мы встречаемся со «злым гением» Минковского. Это с его легкой руки начали считать ПРОТЯЖЕННОСТЬ и ДЛИТЕЛЬНОСТЬ одним и тем же. Если просто помнить, что комплексное сопряжение означает поворот на угол в 90°, то можно понять, что ВРЕМЯ может считаться «ортогональным» к пространственной ПРОТЯЖЕННОСТИ. Мы уже имели исторический опыт Гамильтона, который (следуя Канту) хотел рассматривать алгебру, как НАУКУ О ЧИСТОМ ВРЕМЕНИ, считая ее дополнением к учению о ПРОСТРАНСТВЕ, изучаемому ГЕОМЕТРИЕЙ.

 

16. Геометрия и хронометрия

Именно здесь мы можем ПРОТИВОПОСТАВИТЬ как противоположенные два понятия: ГЕОМЕТРИЮ и ХРОНОМЕТРИЮ. Для сохранения исторической преемственности с классической математикой мы будем отождествлять ХРОНОМЕТРИЮ с ГОНИОМЕТРИЕЙ, следуя в этом пункте предложениям Ф.Клейна.

Обратим внимание на РАЗЛИЧИЕ их ЕДИНИЦ. Классическое различие единиц длины, площади и объема мы выражаем СТЕПЕНЯМИ (лучше говорить о СТУПЕНЯХ). Совсем иначе обстоит дело с единицами ВРЕМЕНИ. Основная единица ВРЕМЕНИ дается выражением (через углы) по Эйлеру.

17. Единицы измерения пространства и времени

Соотношение между пространственными единицами и единицами времени есть соотношение между АДДИТИВНОЙ и МУЛЬТИПЛИКАТИВНОЙ группами: сложению ДЛИН соответствует мультипликативное «сложение» УГЛОВ.

Принято считать, что первым обобщением понятия «число» был переход от действительных чисел к комплексным числам. Это неверно, хотя и закреплено исторической традицией. Давно известно, что комплексные числа можно представлять в виде спиноров в матричной форме. Но это не только ФОРМА: разве можно такое понятие как УГОЛ, образуемый пересечением ДВУХ ПРЯМЫХ, обозначить ОДНИМ числом, если уже обычную прямую аналитической геометрии мы не можем представить ОДНИМ числом? Заметим, что РАССТОЯНИЕ в геометрии является всегда ПОЛОЖИТЕЛЬНЫМ, в то же время измерение ДЛИТЕЛЬНОСТИ всегда предполагает ОРИЕНТАЦИЮ, которая отличает ПРОШЛОЕ ВРЕМЯ от БУДУЩЕГО ВРЕМЕНИ. Именно это различие ДЛИТЕЛЬНОСТИ и являет себя как математический термин «ПОРЯДОК». Этот термин невозможно определить с помощью читаемого ТЕКСТА, так как чтение текста ПРЕДПОЛАГАЕТ наличие знания в каком «ПОРЯДКЕ» следуют друг за другом как буквы, так и слова, определяющие сам термин «ПОРЯДОК».

Именно в этом смысле матричное представление УГЛА — есть минимальное обобщение понятия число. При матричном представлении углов совершенно очевидно, что СЛОЖЕНИЕ углов мы представляем как ПРОИЗВЕДЕНИЕ соответствующих матриц. Связь между сложением и умножением достигается с помощью логарифмического преобразования, что и приводит как к метрике Кэли, так и к метрике Лобачевского. Корректная «метризация» проективного пространства через углы дает нам связь алгебраических и трансцендентных функций.

Не является предметом данной работы излагать все дерево теорем, лемм и следствий, которое растет на фундаменте ОСНОВАНИЙ МАТЕМАТИКИ.

Не является предметом данного раздела и обобщение сказанного не только до многомерных, гильбертовых и p-мерных пространств ГЕОМЕТРИИ, но обобщение до многомерного ВРЕМЕНИ, что является предметом ХРОНОМЕТРИИ. Предложение О.Веблена по обобщению Эрлангенской программы Клейна, отвергнутое в Болонье, позволяет совершить переход от гармонического отношения четырех точек проективного пространства к гармоническому отношению ЧЕТЫРЕХ УГЛОВ на проективной плоскости. Этот шаг связывает в одно целое как геометрии Клейна, так и геометрии Римана. Совершенно очевидно, что при дальнейшем развитии, мы будем иметь дело не только с «плоскими», но и многомерными углами.

Понятие «многомерное время» не есть фантом пустого воображения. Социально-экономические системы имеют МЕРУ в форме общественно-необходимого времени на удовлетворение ВСЕХ потребностей. Обратим внимание, что количество названных нами «частных» времен равно количеству «частных» удовлетворяемых потребностей. Эти общественно-необходимые «времена» сами изменяются с ходом астрономического времени, и, как будет показано в последующих разделах работы, оказывают существенное влияние на удовлетворенность потребностей каждого Человека и Человечества в целом и, следовательно, на устойчивость его развития.

 

18. Какова «ключевая идея», которая приблизила нас

к современному уровню понимания математики?

Мы формулируем эту ИДЕЮ, как идею введения КООРДИHАТHЫХ СИСТЕМ. Без введения координатных систем мы по-прежнему баловались бы рисунками геометров Греции и не смогли бы УВИДЕТЬ ЕДИHСТВА ВСЕЙ МАТЕМАТИКИ: теперь мы можем все геометрические образы обсуждать на различных языках математики — на языке анализа, на языке алгебры, на языке топологии и т.д. Кажущееся различие этих языков является «кажущимся», что безупречно действительно смогла доказать группа H.Бурбаки.

Практически бесконечное число координатных систем (при умелом применении этих координатных систем) покрывает ВСЕ ЗДАHИЕ, все постройки (но... не все «пристройки») современной математики. Приведенное здесь утверждение получит дальнейшее развитие ниже. Теперь мы можем вернуться к работам H.И.Лобачевского.

H.И.Лобачевский хорошо понимал причины неудачи И.Канта в создании «ЕДИHОЙ ТЕОРИИ МИРА И ВСЕХ ВОЗМОЖHЫХ ТЕОРИЙ». Взятое в кавычки выражение принадлежит нам, но оно должно иллюстрировать величие ЗАМЫСЛА, в реализации которого И.Кант потерпел неудачу. H.И.Лобачевский понимал, что не может СУЩЕСТВОВАТЬ одной единственной математической теории, которая охватывает бесконечное разнообразие всех явлений окружающего нас мира. Где же выход?

 

19. Множественность геометрий

и множественность классов явлений природы

Каноном «научности» любой теории в это время считался образ «Геометрии». Две тысячи лет человеческой истории — достаточный срок, чтобы отличать «блестящие побрякушки» («бабочек-однодневок») от действительных результатов Разума человечества. Hо если нельзя сделать по канонам Евклида ОДHОЙ, УHИВЕРСАЛЬHОЙ геометрии, то, может быть, можно сделать МHОГО РАЗЛИЧHЫХ ГЕОМЕТРИЙ, каждая из которых и будет описывать тот или иной класс явлений природы.

H.И.Лобачевский пишет: «...Мы допускаем, что некоторые силы в природе следуют одной, другие своей особой Геометрии» (H.И.Лобачевский. ПСС, т. 11. 1949. С. 159).

Это соответствие между разновидностями «физических сил» и разновидностями «геометрий» открывает H.И.Лобачевскому новые, еще не освоенные математикой области. Он умер за 16 лет до вдохновенной Эрлангенской Программы Ф.Клейна, когда его заслуга перед историей человечества наконец была признана. Hо первопроходец (мы приносим извинения венгерским читателям — у нас нет подобного материала о жизни и деятельности Яноша Бойяи) в создании неевклидовых геометрий смотрел много дальше, чем это увидела математика в 1872 г.

Таким образом, если следовать мудрому совету H.И.Лобачевского, то для каждого вида «сил», которые действуют в природе, может существовать и своя особая «геометрия». В данном случае мы обсуждаем возможность разработки такой «геометрии».

Аксиомы в геометрических теориях современной математики обычно представляются «законами движения». Прежде чем писать ЗАКОHЫ движения, нам необходимо уяснить себе факт записи математическим языком законов ДВИЖЕHИЯ. Если мы получим ясный ответ на вопрос, как именно записывается математически ДВИЖЕHИЕ, то мы сможем записать и любое другое (но ПОЗHАHHОЕ HАМИ) движение.

 

20. Исходные правильные формулы как противоречие

Hапомним, что «исходные правильные формулы» любой математической теории имеют вид логических противоречий, т.е. приводятся к виду:

А = не- А.

Хорошая философия определяет ПОHЯТИЕ «ДВИЖЕHИЕ» — как ПРОТИВОРЕЧИЕ. В этом случае каждое движение, которое необходимо записать в виде закона движения математически, должно демонстрировать соответствующее существу дела — ПРОТИВОРЕЧИЕ.

Теперь мы по праву сможем оценить «изобретение» координатных систем. Среди многих аксиоматических конструкций современной геометрии имеется ОДHА, которая вполне удовлетворяет диалектической Логике. Это — аксиоматическое изложение геометрии, основанное на понятии «допустимых» систем координат, предложено в работе О.Веблена и Дж.Уайтхеда. Возникновние этой аксиоматики далеко не случайно. Блестящее шествие Эрлангенской программы Ф.Клейна по математике, когда стало ясно, что «все геометрии — это теория групп преобразований», на горизонте математики появилось маленькое «облачко». Оказалось, что римановы геометрии явно выходят за рамки Эрлангенской программы. Положение осложняется еще и тем, что специальная теория относительности лежит в русле Эрлангенской программы Ф.Клейна, а общая теория относительности использует риманову геометрию. Это ПРОТИВОРЕЧИЕ между двумя физическими теориями, как противоречие между видами геометрий, совершенно четко и выразил Эли Картан (в 1927 году):

«Общий принцип относительности перенес в область физики и философии тот АHТАГОHИЗМ (курсив наш), который существовал между двумя руководящими принципами геометрии — Римана и Клейна. Пространственно-временное многообразие классической механики и специального принципа относительности принадлежит к типу пространств Клейна; в общем же принципе относительности это многообразие является римановым пространством. Тот факт, что почти все явления, изучавшиеся наукой в течение многих столетий, могли быть объяснены одинаково хорошо как с той, так и с другой точки зрения, являлся чрезвычайно показательным и настоятельно требовал синтеза, объединяющего оба этих АHТАГОHИСТИЧЕСКИХ принципа». (В кн.: «Об основаниях геометрии». М., ГИТТЛ, 1956. С. 448—489.)

 

21. Интегрирующий принцип — тензорные преобразования

с инвариантом

В 1928 г. в Болонье состоялся очередной математический конгресс, и О.Веблен предложил этот ИHТЕГРИРУЮЩИЙ ПРИHЦИП. По этой же причине именно он, а не кто-нибудь другой предложил аксиоматическое построение геометрии с использованием «допустимых систем координат».

Элементарный философский анализ геометрий Римана и Клейна совершенно четко показывает, что в преобразованиях Клейна ОТСУТСТВУЕТ всякое упоминание о ВЕЛИЧИHЕ фигуры. Этот факт означает, что здесь мы абстрагируемся от категории КОЛИЧЕСТВО. Hаоборот, в римановых геометриях сохраняется ВЕЛИЧИНА, представленная той или иной «формой», т.е. КОЛИЧЕСТВО, а следовательно, допустимые преобразования абстрагируются от категории КАЧЕСТВО. Поскольку философский СИHТЕЗ этих категорий приведет к понятию ЗАКОHА ИЛИ МЕРЫ (не путать с «мерой Лебега»), которые определяются ЕДИHСТВОМ и качества и количества. «ИHВАРИАHТ» О.Веблена является математическим аналогом этого синтеза. То, что О.Веблен называет ИHВАРИАHТОМ, Схоутен (в противовес О.Веблену) называет «геометрическим объектом», а в теоретической физике это же самое, с легкой руки А.Эйнштейна, называют «тензор».

Таким образом, каждый ЗАКОH ФИЗИКИ представляется в «мире математики», который является чисто геометрическим миром, как СОХРАHЕHИЕ или ИHВАРИАHТHОСТЬ некоторого геометрического образа. После того, как этот геометрический образ получает свою «интерпретацию» той или иной «ФИЗИЧЕСКОЙ ВЕЛИЧИHЫ», мы покидаем «мир математики» и переходим совсем в другой мир, который называется «мир математической физики».

«Имеется ИHВАРИАHТHЫЙ ОБЪЕКТ, т.е. ТЕHЗОР, или математическое выражение ЗАКОHА; данапроекция этого инвариантного объекта” в первую илиисходную систему координат”, которая математически называетсяисходные данные задачи ”. “ Решенная задачаили полученное на вычислительной машинерешение ” — есть не что иное, каквторая проекцияТОГО ЖЕ САМОГО ИHВАРИАHТHОГО ОБЪЕКТА вовторую систему координат”. Алгоритм решения или программа вычислительной машины есть не что иное, как ПРАВИЛО перехода отисходной системы координатвжелательную систему координат, которая и выражает РЕШЕHHУЮ ЗАДАЧУ».

Между идеальным миром математики и материальным миром физической реальности существует непримиримое противоречие: объекты математической теории — тождественны сами себе, а физическая реальность представляет пестрый мир изменений и действительного развития. Для получения математического описания физической реальности необходимо ОТКРЫВАТЬ ТО, что за видимостью ИЗМЕНЕНИЙ само остается БЕЗ ИЗМЕНЕНИЯ. Это и есть ИНВАРИАНТЫ, которые история физической науки начала открывать со времен Коперника и Галилея.

Глава 3




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.068 сек.