Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные области применения ключевых приборов




 

Мощные полевые и биполярные транзисторы с изолированным затвором (IGBT), обладая:

Ø лучшими характеристиками с точки зрения малых коммутационных потерь,

Ø высоких скоростей переключения и стойкости к режимам перегрузки,

 

Рис.1

Биполярные транзисторы применяются в импульсных источниках частотой 20...60 кГц, нр, системы электронных балластов флюоресцентных ламп (рис. 2).

Рис. 2

В импульсных источниках питания и регуляторах постоянного напряжения с частотой преобразования 75..200 кГц и выходной мощностью от десятков до единиц киловатт широкое применение находят мощные МДП-транзисторы и дискретные типы высокочастотных IGBT (рис.3).

 

Рис.3

 

Из главных задач улучшения энергетических показателей ключевых источников электропитания выделяют:

1. Уменьшение габаритных размеров и массы радиаторов силовых ключей за счет повышения КПД схемы.

2. Уменьшение массо-габаритных характеристик реактивных элементов преобразователя за счет увеличения частоты преобразования.

3. Исключение из схем низкочастотных трансформаторов.

Недостатки импульсных схем:

· Увеличение рабочей частоты преобразователя при форме выходного тока и напряжения, близкой к прямоугольной, приводит к росту динамических потерь в ключах из-за рассеивания дополнительной энергии в паразитных индуктивностях и емкостях силовой схемы;

· Высокий уровень помех при линейной коммутации ключей. Поэтому все большее применение находят схемы электропитания, построенные на основе резонансных преобразователей.

В данных устройствах паразитные элементы являются частью резонансного LC-контура, а силовые ключи коммутируются либо при нулевом токе, либо при нулевом напряжении, что уменьшает динамические потери и электрические перегрузки элементов преобразователя.

Регулирование выходного напряжения в резонансных схемах осуществляется изменением частоты. Наибольшее распространение получили схемы с последовательным LC-контуром, обеспечивающие ограничение тока и возможность параллельной работы на общую нагрузку (рис. 4.4).

а б

Рис. 4.4

Выходное напряжение преобразователя определяется частотой переключения транзисторов и добротностью контура. Работа на частотах ниже резонансной дает возможность коммутировать ключи схемы при нулевом токе, а при частотах выше резонансной — при нулевом напряжении. Данная коммутация является основным достоинством резонансных схем. Амплитудные и действующие значения токов и напряжений на силовых ключах при этом больше, в сравнении с обычными преобразователями, что увеличивает общие потери в схеме.

При выборе ключевых приборов в системах управления электродвигателями требования высоких скоростей переключения не являются доминирующими. Особенностями нагрузки в данных силовых схемах являются следующие факторы:

1. Индуктивный характер.

2. Наличие противонаправленной ЭДС вращения.

3. Кратковременные, но многократные перегрузки по току.

4. Близость пусковых режимов к режиму короткого замыкания.

Высокочастотные полевые транзисторы находят применение в данной области, как правило, для управления электродвигателями постоянного тока, работающими от источников постоянного напряжения (рис. 4.5). Одним из наиболее распространенных вариантов применения здесь является автомобильная электроника, ориентированная на работу от постоянного напряжения 12 В, обеспечиваемого аккумуляторной батареей. Эффективно используются высокочастотные МДП-транзисторы также в схемах управления шаговыми двигателями и безщеточными двигателями постоянного тока.

В системах питания двигателей постоянного тока от сети переменного тока, использующих фазовый способ регулирования эффективны в применении однооперационные тиристоры и симисторы (триаки).

В бытовых приборах и переносных электроинструментах с двигателями постоянного тока мощностью в доли киловатт данные ключи применяются как вследствие их дешевизны, так и простоты систем управления (рис. 4.6).

Метод фазового управления не позволяет плавно регулировать частоту выходного напряжения и получать ее выше частоты питающей сети. Поэтому все большее применение находят асинхронные электродвигатели переменного тока, работа которых строится на базе силовых инверторов напряжения с широтно-импульсной модуляцией (ШИМ) (рис. 4.7).

Применение ШИМ обеспечивает оптимальное управление скоростью вращения асинхронного двигателя путем изменения частоты выходных сигналов в широких пределах. Асинхронные двигатели более экономичны и долговечны, требуют меньших эксплуатационных затрат и более надежны по сравнению с электродвигателями постоянного тока. Стоимость СУ АД может быть больше стоимости самого электродвигателя.

Рис. 4.5 Рис. 4.6

Рис. 4.7

В данных системах возможно применение только полностью управляемых полупроводниковых ключей, сложность управления которыми определяет конечную стоимость оборудования.

В промышленных электроприводах, питаемых от сети переменного тока, рекомендуется применение ключевых приборов на токи от единиц до сотен ампер с частотой переключения от долей герца до десятков килогерц. Особое требование к обеспечению защиты от перенапряжений, коротких замыканий в нагрузке и сквозных токов. Силовые модули на базе IGBT, а также полевые тиристоры МСТ вытеснили в данном применении не только модули биполярных транзисторов, но даже и запираемые тиристоры (GTO).

Запираемые тиристоры и их модификация GCT, а также IGВT, IЕGT применяются:

1. в энергетических установках высоковольтных линий передачи постоянного тока,

2. сверхмощных электроприводах и системах электрифицированного транспорта,

3. в силовых инверторах для различных технологических установок (сварка, индукционный нагрев и т.п.), где требуется преобразование мощности в сотни киловатт и единицы мегаватт.

Главными требованиями к ключам являются:

· низкое прямое падение напряжения при значительных плотностях выходного тока,

· широкая область безопасной работы,

· высокая надежность.

Практическое внедрение индукционных тиристоров, несмотря на их перспективность и более высокие в сравнении с другими тиристорами динамические показатели, оказалось затруднительным главным образом из-за сложности управления и высокой себестоимости.

Перечисленные варианты применения мощных ключей не исчерпывают всего многообразия современных силовых схем и устройств. Отметим наиболее общие критерии, которые используют при выборе типа активного компонента для любого силового устройства:

1. Достаточные для получения требуемой мощности преобразования номинальные токи и напряжения.

2. Прямое падение напряжения в открытом состоянии.

3. Значения усилительных параметров, обеспечивающих эффективность

ключевых свойств, и их вариация в заданном режиме нагрузки.

4. Времена переключения.

5. Энергия потерь и температура структуры.

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-28; Просмотров: 1543; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.