Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства дифференциального оператора. Теорема Коши




 

Мы предполагаем, что читатель знаком с понятием линейного пространства и с основными его свойствами. В дальнейшем будут использоваться следующие пространства:

1) – пространство функций, непрерывных на отрезке

2) – пространство функций непрерывных вместе со своими производными (до --го порядка включительно),

Эти пространства являются линейными пространствами с обычными для функций операциями сложения и умножения на числа.

Теорема 1. Если в операторе все коэффициенты непрерывны на отрезке , то действует из пространства в пространство (т.е. ) и является линейным оператором, т.е.

для произвольных постоянных и и произвольных функций

Действительно, при дифференцировании теряется гладкость функции на единицу, значит при --кратном дифференцировании функция класса переходит в функцию класса Кроме того, поскольку операция дифференцирования линейна, то и линеен оператор Будем рассматривать в основном уравнения (1) со старшим коэффициентом B этом случае на него можно поделить уравнение (1) и записать его в форме

где обозначено:

Наша ближайшая задача – изучить свойства решений этого уравнения. Начнем с теоремы существования и единственности решения задачи Коши

где произвольный вектор.

Теорема 2 (Коши). Если в уравнении (2) все коэффициенты и правая часть непрерывны на отрезке , то задача Коши (2) для этого уравнения имеет единственное решение и это решение определено также на этом отрезке.

Таким образом, теорема существования и единственности решения начальной задачи для линейного дифференциального уравнения носит "глобальный" характер в отличие от "локального" характера общей теоремы существования единственности решения для нелинейного уравнения.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 497; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.