Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекции 2,3. Физические концепции описания природы




В современном понимании методология – учение о структуре, логической организации, методах и средствах деятельности. В частности, методология естествознания – это учение о принципах построения, формах и способах естественнонаучного познания.

Сравнение есть установление сходства и различия объектов.

Анализ представляет собой мысленное или реальное разложение объекта на составляющие его части. Когда путем анализа частности достаточно изучены, наступает следующая стадия познания – синтез –объединение в единое целое расчлененных анализом элементов. Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез вскрывает то общее, что связывает части в единое целое. Анализ и синтез – основные приемы мышления.

Абстрагирование –мысленное выделение какого-либо предмета, в отвлечении от его связей с другими предметами, какого-либо свойства предмета в отвлечении от других его свойств, какого-либо отношения предметов в отвлечении от самих предметов.Абстрагирование составляет необходимое условие возникновения и развития любой науки и человеческого познания вообще. Абстрагирование – это движение мысли вглубь предмета, выделение его существенных элементов.

Идеализация как специфический вид абстрагирования – это мыслительное образование абстрактных объ­ектов, не существующих и не осуществимых в действительности, но для которых имеются прообразы в реальном мире. Идеализация – это процесс образования понятий, реальные прототипы которых могут быть указаны лишь с той или иной степенью приближения.

Аналогией называется вероятное, правдоподобное заключение о сходстве двух предметов в каком-либо признаке на основании установленного их сходства в других признаках. Аналогии дают лишь вероятные заключения, они играют огромную роль в познании, так как ведут к образованию гипотез – научных догадок и предположений, которые в ходе последующего этапа исследований и доказательств могут превратиться в научные теории. Аналогия как метод чаще всего применяется в теории подобия, на которой основано моделирование.

В современной науке и технике все большее распространение получает метод моделирования, сущность которого заключается в воспроизведении свойств объекта познания на специально устроенном его аналоге– модели. Принцип моделирования составляет основу кибернетики.

В качестве метода естественнонаучного исследования индукцию можно определить как процесс выведения общего положения из наблюдения ряда частных единичных фактов.

Дедукция – это процесс аналитического рассуждения от общего к частному или менее общему. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений, а концом – следствия из посылок, теорем. Если посылки дедукции истинны, то истинны и ее следствия. Дедукция – основное средство доказательства, проводящегося по строгим правилам, не может приводить к заблуждениям.

Открытие –установление новых, ранее неизвестных закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познания.

Одна из характерных особенностей творческой работы состоит в разрешении противоречий. Любое научное открытие или изобретение представляет собой создание нового, неизбежно связанного с отрицанием старого. В этом заключается диалектика развития мысли. Творческий процесс выстраивается в логическую цепь операций: постановка задачи, предвидение идеального конечного результата, отыскание противоречия, мешающего достижению цели, открытие причины противоречия и, наконец, разрешение противоречия.

В процессе научного исследования большую роль играет интуиция –способность постижения истины путем прямого ее усмотрения без обоснования с помощью доказательства в моменты приливов вдохновения. Понятие интуиции сближает научное творчество с художественным.

Характерная черта научного мышления – доказательность. Во всяком доказательстве имеются: тезис, основания доказательства (аргументы) и способ доказательства. Тезисом называется положение, истинность или ложность которого выясняется посредством доказательства. Доказательство, посредством которого выясняется ложность, называется опровержением.

Все положения, на которые опирается доказательство и из которых необходимо следует истинность доказываемого тезиса, называются основаниями или аргументами. Основания состоят из положений о достоверных фактах, определений, аксиом и ранее доказанных положений.

Аксиомы –положения, не доказываемые в данной науке и играющие в ней роль допускаемых оснований доказываемых истин.

Связь оснований и выводов из них, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства. Доказательство одного итого же положения науки может быть различным. Связь оснований, ведущая к истинности доказательного тезиса, не единственная.

Между явлениями природы существуют устойчивые, повторяющиеся связи – проявления законов природы.

В системе научного знания большое значение имеют теории. Теории дают представление о закономерностях и существующих связях в определенной области.

Теорияэто обобщение, логически объясняющее определенный набор фактов, сама по себе – не факт, так как недоступна для непосредственного наблюдения. Тем не менее, ее можно проверить и в зависимости от результатов признать или отклонить. Главное отличие теории от гипотезы – ее достоверность, доказанность. Квинтэссенцией теории являются законы, устанавливающие количественные связи и соотношения между различными наблюдаемыми в опыте величинами.

Законы природы неизменны и всегда выполняются, им следуют. Научные законы – это попытка описать законы природы на языке математических формул или других точных формулировок.

Для понимания теории как формы знания важно учитывать, что все теории оперируют не реальными объектами, а их идеальными моделями, которые неизбежно абстрагируются от каких-то реальных сторон объектов и поэтому всегда дают неполную картину действительности.

Главные элементы теории – ее принципы и законы. Принципы –наиболее общие и важные фундаментальные положения теории. Как обобщающий результат предыдущего познания в данной теории, принципы всесторонне раскрываются и обосновываются. При построении теории принципы играют роль исходных, основных и первичных посылок, закладываемых в фундамент теории. Законы конкретизируют принципы, раскрывают взаимосвязь вытекающих из них следствий. Раскрывая сущность объектов, теория выполняет две важнейшие функции: объяснения и предсказания, научного предвидения, является одной из наиболее устойчивых форм научного знания. Чем более общим является знание, тем оно устойчивее.

Переход к новому принципу – по существу, переход к новой теории. При этом новая теория должна обязательно удовлетворять принципу соответствия, сформулированному Н. Бором. Согласно этому принципу каждая правильная новая, более общая теория должна не отвергать устоявшуюся, предшествующую ей менее общую теорию, а сводиться к ней в тех условиях, при которых она была получена. Так, например, более общая специальная теория относительности не отвергает классическую механику, а сводится к ней при скоростях, много меньших скорости света.

Изменения в наиболее общих теориях приводят к качественным изменениям всей системы теоретического знания, в результате чего происходит научная революция. Известные научные революции связаны с именами Н. Коперника, И. Ньютона, А. Эйнштейна, И. Пригожина.

Взаимодействие, близкодействие, дальнодействие. Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие электрических заряженных тел, возник вопрос, почему физические тела, обладающие массой, действуют друг на друга на больших расстояниях через пустое пространство и почему заряженные тела взаимодействуют между собой даже через электрически нейтральную среду?

До введения понятия «поле» на этот вопрос не было удовлетворительного ответа. Долгое время считалось, что взаимодействие между телами может непосредственно осуществляться через пустое пространство, которое не принимает участия в передаче взаимодействий, а передача взаимодействия от тела к телу передается мгновенно, т.е. с бесконечной скоростью. Такое предположение составляет сущность концепции дальнодействия, которую обосновал Р. Декарт.

Близкодействие. Законы взаимодействия электрически заряженных тел допускали возможность их относительно простой проверки. Установлено, что взаимодействие электрических зарядов происходит не мгновенно. Каждая электрически заряженная частица создает электрическое поле, действующее на другие частицы не в тот же момент, а спустя некоторое время. Иными словами, взаимодействие передается через посредника – электромагнитное поле, а скорость распространения электромагнитного поля равна скорости света. Это составляет суть концепции близкодействия.

Фундаментальные типы взаимодействий. В настоящее время известно четыре типа фундаментальных взаимодействий: гравитационное, электромагнитное, слабое и сильное.

Слабое взаимодействие отвечает за внутриядерное взаимодействие, приводящее, например, к распаду нейтрона с испусканием электронов (β -излучение), сильное взаимодействие – за внутринуклонные взаимодействия, оно удерживает кварки внутри нуклонов.

Действие взаимодействий в пространстве различно. Гравитационные и электромагнитные взаимодействия описываются законами «обратных квадратов расстояний» и проявляются во всем пространстве до бесконечности. Сильные взаимодействия проявляются только в пределах размера ядра ~10–13 см, а слабые взаимодействия — на расстояниях значительно меньших размеров ядер.

Относительная сила взаимодействий различна. Если сильное взаимодействие условно принять за единицу, то электромагнитное взаимодействие будет в 102 раз меньше, слабое – в 1010, а гравитационное – в 1038 раз меньше сильного взаимодействия.

Каждое взаимодействие может оказывать решающее влияние на процессы в том или ином конкретном случае. Даже такое взаимодействие, как гравитационное, несмотря на свою кажущуюся малость играет, доминирующую роль в процессах космического порядка, где присутствуют объекты с огромной массой и большие пространственные масштабы явлений.


Корпускулярная и континуальная концепции описания природы. Период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией, в нем вырабатываются общие точки зрения на окружающий мир, ставятся вопросы о природе материи и духа, законах развития материального мира, о природе пространства и времени, движения и света. Возникают такие натурфилософские концепции, как атомистика Левкиппа–Демокрита и натурфилософия Аристотеля, они по сути, обобщили античную натурфилософию и сформулировали две принципиально различные концепции взглядов на строение материи и развитие материального мира: так называемые корпускулярную (Демокрит) и континуальную (Аристотель) концепции описания природы.

По Демокриту, материя состоит из вещества; вещество состоит из атомов-корпускул и пустоты; атомы находятся в постоянном движении; атомы вечны, неизменны, неделимы и отличаются друг от друга лишь величиной и формой.

По Аристотелю, мир материален, но объективно существуют конкретные вещи (предметы), а материя – некая субстанция, из которой при определенных условиях могут возникнуть те или иные предметы. Реальные тела можно дробить непрерывно, до бесконечности. Синонимом непрерывности является континуальность. По Аристотелю, материя непрерывна (континуальна) и «природа не терпит пустоты».

Две выдвинутые концепции на природу материи, по существу, определили всю дальнейшую историю развития естествознания более чем на двухтысячелетний период, вплоть до XX в.

Корпускулярно-волновой дуализм. Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непрерывной среде – эфире. И. Ньютон считал, что свет представляет собой поток частиц-корпускул, движущихся прямолинейно. Такая точка зрения, в частности, хорошо объясняла законы геометрической оптики. Однако при изучении других оптических явлений как интерференция, дифракция, поляризация, дисперсия света, которые, напротив, легко было объяснить, исходя из того, что свет – волновое движение через некоторое необычное вещество – «эфир».

Во второй половине XIX в. точку в вопросе о природе света поставил Дж. Максвелл, который, создав теорию электромагнетизма, доказал, что свет представляет собой электромагнитное поле, распространяющееся в виде волн. То есть была открыта новая материальная субстанция – поле, свойства и законы движения которой в соответствии с развитой Дж. Максвеллом электродинамикой соответствовали в большей мере континуальной, непрерывной концепции Аристотеля.

Таким образом, к концу XIX в. что материя предстается в виде двух форм – вещественной и полевой с существенно разнымисвойствами, вещественная находит объяснение в корпускулярной, а полевая – в континуальной концепции.

Начало XX в. ознаменовалось открытиями в изучении вещества и поля, полностью изменившими представления о природе материи. Для объяснения излучения абсолютно черного тела М. Планку в 1900 г. и фотоэффекта Л. Эйнштейну в 1905 г. пришлось принять, что свет в ряде случаев ведет себя как поток отдельных частиц – фотонов (корпускул), а не как волна. При рассмотрении электромагнитного поля возникло представление о корпускулярно-волновом дуализме. Причем при больших длинах волн электромагнитного излучения в большей мере проявляются непрерывные (континуальные) волновые свойства света, а при малых (рентгеновские и γ –лучи) – дискретные (корпускулярные), квантовые свойства. Физика начала XX в. открыла диалектическое единство двух противоположностей – частиц и волн.

Луи де Бройль, опираясь на законы симметрии в природе в 1923 г. выдвинул идею распространения принципа корпускулярно-волнового дуализма света на все вещественные частицы микромира, имеющие массу покоя, – электроны, протоны и т.д., предположил, что любые частицы вещественной материи наряду с корпускулярными (массой, импульсом, энергией) обладают также волновыми свойствами (частотой ω и длиной волны λ). Причем так же, как и для фотонов, энергия (Е) и импульс (р) частиц вычисляются по формулам: Е = hω, p = h / λ.

Откуда для так называемой длины волны де Бройля было получено выражение λ = h/p. Вскоре гипотеза де Бройля нашла экспериментальное подтверждение, когда К. Дэвиссон и Л. Джермер открыли дифракцию электронов на кристаллах, т.е. доказали существование волновых свойств у частиц – электронов. Оказалось, что наличие волновых свойств у микрочастиц-корпускул – это универсальное явление, общее свойство материи.

Наконец, созданные в 20-е гг. XX в. новые фундаментальные квантовые теории микромира–квантовая механика и квантовая теория поля (квантовая электродинамика) – показали, что корпускулярно-волновой дуализм в микромире отражает глубинную взаимосвязь материальных субстанций − вещества и полей и, в конечном счете, свидетельствует о единстве материи, проявляясь во взаимодействии частиц и полей таким образом, что кванты полей при взаимодействии с веществом могут исчезать, образуя пары вещественных частиц (электрон–позитрон, протон–антипротон), точно так же, как и вещественные частицы, в результате аннигиляции могут превращаться в кванты полей.

Микрочастицами называют элементарные частицы (электроны, протоны, нейтроны, фотоны и др.), а также сложные частицы, образованные из сравнительно небольшого числа элементарных частиц (ядра, атомы).

Э Шредингер в 1926 г. получил свое знаменитое уравнение, сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (ψ). Согласно М. Борну, квадрат модуля пси-функции в пределах некоторого объема определяет вероятность того, что частица будет обнаружена в пределах этого объема. Вид функции получается из решения уравнения Шредингера, которое является основным уравнением нерелятивистской квантовой механики.Уравнение Шредингера описывает взаимодействие электронов с ядрами атомов, описывает форму электронных оболочек атомов и ионов, химическую связь и строение молекул.

Волновая природа частиц отражается и в соотношениях неопределенностей, полученных в 1927 г. Гейзенбергом – ∆х∆р ≥ h/2, ∆E∆t ≥ h/2, где ∆х – неопределенность координат, ∆р – неопределенность импульса, ∆Е – неопределенность энергии и ∆t – неопределенность времени.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.