Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 13,14. Человек, биосфера и космические циклы 1 страница




Принципы мудрого отношения к жизни

Физические нагрузки успокаивают и помогают переносить душевные травмы. Умственное перенапряжение, неудачи, неуверенности, бесцельное существование – самые вредоносные стрессоры. Среди всех работ, с которыми способен справиться данный человек, надо найти ту, что нравится больше всех и ценится людьми. Человек нуждается в признании, он не может вынести постоянных нареканий и порицаний, потому что больше всех других стрессоров делает его труд изнурительным и вредным.

Проследив динамику стресса, необходимо научиться эффективно, управлять им. Лучшее поведение для человека – это следование естественному ходу вещей, деятельность без нарушения меры.

Наибольшую пользу в самоорганизации оказывают принципы мудрого отношения к жизни: умение отличить главное от второстепенного; внутреннее спокойствие (создает психологический иммунитет от ситуационных помех); эмоциональная зрелость и устойчивость; знание меры воздействия на события; умение подходить к проблеме с разных точек зрения; готовность к любым неожиданным событиям; восприятие действительности такой, какой она есть, а не такой, какой человеку хотелось бы видеть; стремление выйти за рамки проблемной ситуации; наблюдаемость; дальновидность; стремление понять других; умение извлекать положительный опыт из всего происходящего.

Оптимизация умственной деятельности, процесс творчества, упорная работа, достижение конечных результатов даже при самом бурном темпе развития, способствуют самореализации и самоутверждению человека, адаптируют его к стрессорам. «Найдите свой оптимальный уровень стресса, – живите полной жизнью»; человек не должен бояться риска, жизненных трудностей, быть оптимистом. Человек должен искать в жизни радости и находить их, но не только для себя и не за счет других; стараться забывать об отвратительном и тягостном.

 

Биосфера и ее структура. Термин «биосфера» использовал австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами.

В.И. Вернадским было разработано представление о биосфере как глобальной единой системе Земли, где весь основной ход геохимических и энергетических превращений определяется жизнью. Он впервые создал учение о геохимической роли живых организмов, показав, что их деятельность является главным фактором преобразования земной коры. По его представлениям: биосфера – та область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается воздействию живых организмов. Участие каждого отдельного организма в геологической истории Земли ничтожно мало. Однако живых существ на Земле много, они обладают высоким потенциалом размножения, активно взаимодействуют со средой обитания и, в конечном счете, представляют в своей совокупности особый, глобальных масштабов фактор, преобразующий верхние оболочки Земли. Биосферу рассматривают как наиболее крупную экосистему планеты, поддерживающую глобальный круговорот веществ.

Современная жизнь распространена в верхней части земной коры (литосфере), в нижних слоях воздушной оболочки Земли (атмосфере) и в водной оболочке Земли (гидросфере). На поверхности Земли в настоящее время полностью лишены живых существ лишь области обширных оледенений и кратеры действующих вулканов. В. И. Вернадский указывал на «всюдность» жизни в биосфере.

В глубь Земли живые организмы проникают на небольшое расстояние. В литосфере жизнь ограничивает, прежде всего, температура горных пород и подземных вод, которая постепенно возрастает с глубиной и на уровне 1,5–15 км уже превышает 100˚С. В нефтяных месторождениях на глубине 2–2,5 км бактерии регистрируются в значительном количестве (живые организмы обнаружены до глубины 7,5 км). В океане жизнь распространена на всех глубинах и встречается на дне океанических впадин в 10–11 км и температурой около 0˚С. Верхняя граница жизни в атмосфере определяется нарастанием ультрафиолетовой радиации. На высоте 25–27 км большую часть ультрафиолетового излучения Солнца поглощает находящийся здесь озон. Все живое, поднимающееся выше защитного слоя озона, погибает. Основная часть жизни в атмосфере сосредоточена в слое до 1–1,5 км. В горах граница распространения наземной жизни около 6 км над уровнем моря.

Функции живого вещества биосферы. Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют следующие основные геохимические функции живого вещества:

1. Энергетическая (биохимическая) – связывание и запасание солнечной энергии в органическом веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедеятельности организмов.

2. Газовая – способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. С газовой функцией связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период связывают со временем, когда концентрация кислорода достигла примерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных космических излучений выполняла вода).

3. Концентрационная – «захват» из окружающей среды живыми организмами и накопление в них атомов биогенных химических элементов. Концентрационная способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколь­ко порядков. Содержание углерода в растениях в 200 раз, а азота в 30 раз превышает их уровень в земной коре. Содержание марганца в некоторых бактериях может быть в миллионы раз больше, чем в окружающей среде. Результат концентрационной деятельности живого вещества – образование залежей горючих ископаемых, известняков, рудных месторождений и т.п.

4. Окислительно-восстановительная – окисление и восстановление различных веществ с участием живых организмов. Под влиянием живых организмов происходит интенсивная миграция атомов элементов с переменной валентностью (Fe, Mn, S, Р, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и т.п.

5. Деструктивная – разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как остатков органического вещества, так и косных веществ. Наиболее существенную роль в этом отношении выполняют редуценты (деструкторы) – сапротрофные грибы и бактерии.

6. Транспортная – перенос вещества и энергии в результате активной формы движения организмов. Такой перенос может осуществляться на огромные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения).

7. Средообразующая – преобразование физико-химических параметров среды. Эта функция является в значительной мере интегральной – представляет собой результат совместного действия других функций. Она имеет разные масштабы проявления. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локальные структуры.

8. Рассеивающая – функция, противоположная концентрационной – рассеивание веществ в окружающей среде. Она проявляется через трофическую и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п. Железо гемоглобина крови рассеивается кровососущими насекомыми.

9. Информационная – накопление живыми организмами определенной информации, закрепление ее в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

10. Биогеохимическая деятельность человека – превращение и перемещение веществ биосферы в результате человече­ской деятельности для хозяйственных и бытовых нужд человека. Например, использование концентраторов углерода – нефти, угля, газа и др.

Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путем обмена веществ между живым веществом и окружающей средой.

Круговорот веществ в биосфере. Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты.

Геологический круговорот (большой круговорот веществ в природе) – круговорот веществ, движущей силой которого являются геологические процессы. Протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли. Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счет экзогенных процессов.

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов и совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ, затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ. В зависимости от расположения резервного фонда (т.е. веществ не связанных с живыми организмами) биогеохимические круговороты можно разделить на два типа:

1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды.

С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) – круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две со­ставляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).

Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ.

Принципы эволюции, воспроизводства и развития живых систем. Биологическая эволюцией – это историческое развитие организмов, в основе которого лежат уникальные процессы функционирования генетической информации в конкретных условиях окружающей среды.

Основу принципов эволюции, воспроизводства и развития живых систем составляют, предложенные Ч. Дарвином, движущие силы эволюции: наследственная изменчивость, борьба за существование, естественный отбор.

Основные эволюционные учения. На протяжении многих веков господствовали представления о Божественном происхождении природы креационизма, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изменялись.

К концу XVIII в. было описано много животных и растений, проводились попытки их систематизации. Значительный вклад в создание системы природы внес шведский ученый К. Линней.

Эволюционное учение Ламарка. В системе природы Ламарк разместил организмы в восходящем порядке – от простейших до высокоорганизованных существ. По его мнению, эволюция идет на основании внутреннего стремления организмов к прогрессу. Причиной многообразия живого Ламарк считал воздействие различных факторов среды, причем реакции организма на воздействия среды носят целесообразный характер и передаются по наследству, эти представления оказались ошибочными.

Теория эволюции Дарвина. В 1858 г. Ч.Дарвин и независимо от него А.Р. Уоллес обосновали принцип естественного отбора и представление о борьбе за существование как механизме этого отбора. Теория эволюции путем естественного отбора основана на следующих положениях:

1. Для живого характерно наличие изменчивости, причем для эволюции громадное значение имеет наследственная изменчивость. При благоприятных условиях эти различия могут не играть существенной роли, при неблагоприятных – каждое мельчайшее различие может стать решающим в том, останется ли этот организм в живых и даст потомство или же он будет уничтожен.

2. Для организмов характерно размножение в гео­метрической прогрессии. Потенциально вид в каждом поколении производит гораздо больше особей, чем их может выжить до взрослого состояния на занимаемой территории. Следовательно, значительная часть родившихся гибнет в «борьбе за жизнь». В результате борьбы за существование происходит элиминация (физическая гибель или устранение при размножении) особей, которые по признакам наименее соответствуют условиям среды обитания. Таким образом, следствием борьбы за существование является естественный отбор.

Естественный отбор, по Дарвину, – это выживание наиболее приспособленных, и преимущественное оставление ими потомства. Естественный отбор не отбирает более приспособленных, они просто сохраняются в результате элиминации менее приспособленных.

Ч.Дарвин считал, что возникновение новых видов происходит постепенно путем накопления полезных индивидуальных изменений, увеличивающихся из поколения в поколение. Процесс видообразования происходит по принципу дивергенции, т.е. за счет расхождения признаков.

Таким, образом, результатом отбора является возникновение приспособлений и на этой основе – видового разнообразия.

Дарвин впервые предложил естественно-научное объяснение эволюционного процесса. Он указал на движущие силы эволюции: наследственная изменчивость, борьба за существование, естественный отбор; дал объяснение механизма видообразования.

Синтетическая теория эволюции (СТЭ) возникла в конце XIX в. и представляет собой единение нескольких наук, первостепенными из них являются теория эволюции и генетика. Основные положения СТЭ по Н.Н. Воронцову следующие:

1. Материалом для эволюции служат, как правило, очень мелкие, но дискретные изменения наследственности – мутации.

2. Основным или даже единственным движущим фактором эволюции является естественный отбор, основанный на отборе (селекции) случайных и мелких мутаций.

3. Наименьшая эволюционирующая единица эволюции – популяция.

4. Эволюция носит дивергентный характер, т.е. один таксон может стать предком нескольких дочерних таксонов, но каждый вид имеет единственный предковый тип.

5. Эволюция носит постепенный и длительный характер.

6. Вид состоит из множества соподчиненных, морфологически, физиологически и генетически отличных, но репродуктивно не изолированных единиц – подвидов, популяций.

7. Обмен аллелями возможен лишь внутри вида. Вид – генетически целостная и замкнутая система.

8. Любой реальный, а не сборный таксон имеет однокорневое, монофилитическое происхождение.

Начальные этапы развития жизни на Земле. Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно органическими веществами или менее удачливыми своими собратьями; энергетические потребности удовлетворяли за счет брожения.

При увеличении численности гетеротрофных прокариотических клеток запас органических соединений в первичном океане истощался. В этих условиях значительное преимущество при отборе должны были приобрести организмы, способные к автотрофности, т.е. к синтезу органических орг. веществ из неорганических. Видимо, первыми автотрофными организмами были хемосинтезирующие бактерии. Следующим этапом было развитие реакций с использованием солнечного света – фотосинтез.

Для первых фотосинтезирующих бактерий источником электронов был сероводород. Значительно позже у цианобактерий (синезеленых водорослей) развился более сложный процесс получения электронов из воды. В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород. Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания. Способность синтезировать при дыхании большее количество АТФ позволяла организмам расти и размножаться быстрее, а также усложнять свои структуры и обмен веществ.

Многообразие живых организмов – основа организации и устойчивости биосферы. Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымира­ния. Биологическое разнообразие – наиболее ценный «ресурс» планеты. Биологическое разнообразие включает два понятия: генетическое разнообразие или многообразие генетических свойств у особей одного вида и видовое разнообразие или чис­ло различных видов внутри сообщества или всей биосферы. Биоразнообразие обеспечивает новыми источниками питания, энергии, сырья, химических и лекарственных продуктов. Генетическое разнообразие позволяет видам совершенствоваться, приспосабливаться, использовать необходимые ресурсы, найти место в биогеохимическом круговороте Земли. Биоразнообразие – страховая политика природы против катастроф. Структура биологического разнообразия. Единицы систе­мы – демы и популяции. Генофонд популяции.

Структура и функционирование экологических систем. Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздействия экологичес­ких факторов. По природе экологические факторы делят на абиотические и биотические, природные и антропогенные.

Абиотические факторы – компоненты неживой природы, прямо или косвенно воздействующие на организм (свет, температура, влажность, ветер, атмосферное давление, землетрясения, извержения вулканов, движение ледников, радиоактивное излучение, крутизна местности и др.).

Биотические факторы воздействие на организм других живых организмов (внутривидовые, межвидовые; по типу взаимодействия – протокооперацию, мутуализм, комменсализм, внутривидовую и межвидовую конкуренции, паразитизм, хищничество, аменсализм, нейтрализм.

Антропогенные факторы – деятельность человека, приводящая либо к прямому воздействию на живые организмы, либо к изменению среды их обитания (охота, промысел, сведение лесов, загрязнение, эрозия почв и др.).

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакцияхживых существ можно выявить ряд общих закономерностей.

1. Закон толерантности (закон оптимума или закон В. Шелфорда) каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятель­ности особей (много «хорошо» – тоже «не хорошо»).Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называется экологической валентностью или толерантностью.

2. Закон минимума (закон Ю. Либиха или правило ограничивающих факторов) возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума.

3. Гипотеза незаменимости фундаментальных факторов (В.Р. Вильямсон) – полное отсутствие в среде полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых; например, света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами. Так, по данным «Книги рекордов Гиннеса» без воздуха человек может прожить до 10 мин., без воды – 10–15 суток, без пищи – до 100 дней.

Живые организмы находятся между собой и абиотическими условиями среды обитания в определенных отношениях, обра­зуя тем самым, так называемые, экологические системы.

Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

Биотоп – определенная территория со свойственными ей абиотическими факторами среды обитания (климат, почва).

Биогеоценоз – совокупность биоценоза и биотопа.

Экосистема (экологическая система) – система совместно обитающих живых организмов и условий их существования, связанных потоком энергии и круговоротом веществ. Экосистема = биоценоз + биотоп.

При всем многообразии органический мир представляет собой единое целое. Как бы ни отличались друг от друга отдельные виды животных, растений и микроорганизмов, всем им присуще определенное биохимическое единство, выражающееся в общности химического состава (белков, углеводов, жиров, ферментных и гормональных систем и др.) и близости типов реакций, лежащих в основе процессов ассимиляции и диссимиляции. Огромное видовое разнообразие живых организмов обеспечивает постоянный биогеохимические круговороты веществ. Каждый из организмов, вступает в специфические взаимоотношения со средой и играет свою роль в трансформации веществ и энергии. Живые организмы входят в тот или иной биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

Важное экологическое правило состоит в том, что чем разнороднее и сложнее биоценоз, тем выше его устойчивость, способность противостоять различным внешним неблагоприятным воздействиям. Одни и них сохраняются в течение длительного времени, другие закономерно изменяются. Процесс смены одного сообщества другим называется сукцессией. В ходе сукцессии увеличивается разнообразие входящих в состав биоценоза видов организмов, вследствие чего повышается его устойчивость.

Повышение видового разнообразия обусловлено тем, что каждый новый компонент биоценоза открывает новые возможности для других. Например, появление деревьев позволяет проникнуть в экосистему видам, живущим в подсистеме дерева: на коре, под корой, строящим гнезда на ветвях, в дуплах.

Объединение разнородных индивидуумов в популяции создает преимущества в борьбе за существование и обеспечивает более активные отношения вида со средой обитания, поскольку возникают более активные сложные формы групповой жизнедеятельности. Морфологическое разнообразие внутри вида, существование географических рас (подвидов) и биологических форм расширяют использование видом среды и имеют важное значение в борьбе за существование с другими видами. В состав биоценоза входят 4 функциональных компонента, обеспечивающих круговорот веществ:

Продуценты автотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтез (растения и авто­трофные бактерии).

Консументы (макроконсументы, фаготрофы) – гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов (животные, гетеротрофные растения, некоторые микроорганизмы).

Редуценты (микроконсументы, деструкторы, сапротрофы, осмотрофы) – гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минераль­ных веществ (сапротрофные бактерии и грибы).

В экосистеме пищевые и энергетические связи идут в направлении: продуценты → консументы → редуценты. Питаясь друг другом, живые организмы образуют цепи питания. Каждое звено цепи называется трофическим уровнем. При передаче энергии в пищевой цепи с одного трофичес­кого уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики), и только около 10 % от первоначального количества передается по пищевой цепи.

Правило десяти процентовна каждый следующий трофический уровень переходит примерно 10 % вещества и энергии предыдущего уровня.

Таким образом, биоценозы – целостные системы, где существование одних видов без других невозможно, так как их обмены веществ сопряжены и приспособлены друг к другу: одни виды используют продукты метаболизма других видов или их самих в качестве пищи. В биоценозе на основе взаимодействия составляющих их видов возникают новые формы отношений живых существ с неживой природой.

Порция солнечной энергии, поступающая в виде света, связывается фототрофами – организмами, способными преобразовывать световую энергию в энергию химических связей сложных органических веществ (растения используют 1 % солнечной энергии). Этот процесс называется фотосинтезом и является основой всей жизни на Земле. В результате фотосинтеза не только создается пища для всех животных, грибов и множества бактерий, использующих готовые органические вещества, но и выделяется в атмосферу кислород, необходимый для жизни большинства организмов.

Помимо энергии всем организмам необходимы элементы, входящие в состав неорганических веществ, в частности углерод, водород, кислород, азот. Они необходимы всем живым существам в больших количествах, в связи, с чем они получили название органогенных элементов. Всем организмам нужны также фосфор, сера, калий, кальций, железо, магний и другие элементы. Все перечисленные элементы совершают в биосфере круговорота переходя от одних организмов к другим.

В то же время биосфера Земли является ресурсом для жизни живых организмов. Например, разнообразные виды микробов (хемогетеротрофы, фотоавтотрофы и др.) в результате жизнедеятельности вырабатывают кислород, необходимый для жизни всех существ.

Бактерии, цианобактерии (сине-зеленые водоросли), микроскопические грибы, простейшие играют ведущую роль в жизни биосферы. Не будь микроорганизмов, круговорот веществ на планете не мог бы осуществляться. Условия, в которых ныне существуют высшие формы жизни (растения, животные), созданы микроорганизмами, прежде всего бактериями.

Мир бактерий разнообразен. Существуют сообщества микроорганизмов, образующие горные породы и называемые строматолитами. Древнейшие сообщества микроорганизмов, к которым относятся и строматолиты, создали ту биохимическую «машину» планеты, в которую затем встраивались растения и животные. Именно они создали первую на Земле пленку органического вещества и обогатили атмосферу кислородом.

Возникшие значительно позже растения и животные в свою очередь создали для бактерий новые экологические ниши. Так, особые сообщества микроорганизмов складываются в почве, прилегающей к корням растений. Или, например, некогда проглоченные с частицами органического вещества бактерии в ходе эволюции образовали сообщества в пищеварительном тракте млекопитающих.

Всюду на Земле можно встретить разнообразные формы жизни – от невидимых вирусов и бактерий до громадных китов и гигантских деревьев. Рост разнообразия живых организмов способствовал возрастанию устойчивости биосферы, ее развитию и совершенствованию, а также эволюционному развитию видов и сохранению энергии и ресурсов.

В ходе естественного отбора в составе биоценоза неизбежно сохраняются лишь те виды организмов, которые могут наиболее успешно размножаться именно в данном сообществе. Устойчивость биосферы в целом, ее способность эволюционировать определяется тем, что она представляет собой систему относительно независимых биоценозов. Взаимосвязь между ними ограничивается связями посредством неживых компонентов биосферы.

Биологическое разнообразие животных увеличивается от полюсов к экватору и достигает своего пика в тропиках, в морях и океанах.

В истории Земли были катастрофы, когда биологическое разнообразие, как на суше, так и в океане резко сокращалось за короткие в геологическом масштабе сроки. Многие виды исчезали, земная кора опускалась или поднималась, менялись уровень моря, климат. Виды погибали, не приспособившись к новым условиям, но они сменялись новыми. Биосфера Земли проявила свою устойчивость и способность развививаться благодаря многообразию живых организмов, их способности выживать, приспосабливаться к изменяющимся условиям, размножаться.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 628; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.