Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Виды структурных неоднородностей массивов горных пород,




классификация.

Характерным свойством горных пород является высокая степень их неоднородности, под которой понимают пространственную изменчивость их строения, состояния и свойств, обусловленную особенностями генезиса, историей развития и динамикой экзогенных процессов.

Ещё более высокая степень неоднородности наблюдается в массивах, сложенных различными горными породами. Кроме того, в массивах пород часто встречаются геологические нарушения и повсеместно развита естественная трещиноватость. Наконец, в окрестности горных выработок массив интенсивно расчленяется искусственными (технологическими) трещинами, появление которых связано с технологическими процессами ведения горных работ, например, с проведением взрывных работ.

В результате расчленения поверхностями структурных неоднородностей различных видов массивы горных пород имеют ярко выраженную блочную структуру, причем размеры отдельных структурных блоков обычно существенно различаются между собой и определяются расстояниями между соседними однотипными поверхностями структурных неоднородностей. В свою очередь, степень распространения различных типов неоднородностей весьма различна. При этом необходимо отметить, что блочное строение характерно для любых массивов пород, однако для массивов пород, сложенных относительно слабыми осадочными породами оно выражается относительно слабее, чем для массивов прочных скальных пород.

Разработаны различные классификации структурных неоднородностей, одна из наиболее удачных предложена докт. физ.-мат. наук М.В. Рацем, который выделил несколько различных порядков структурных неоднородностей.

К неоднородностям нулевого порядка М.В. Рац отнёс крупные тектонические разрывы, связанные с региональными полями тектонических напряжений, разбивающие массивы пород на блоки с линейными размерами свыше 10 км, это по своей сути региональные структурные неоднородности земной коры III - IV порядков.

Далее выделяются структурные неоднородности, относящиеся собственно к массиву пород в масштабах отдельных месторождений.

Неоднородности первого порядка обусловлены наличием в массиве различных по составу, структуре и текстуре пород, крупных геологических нарушений, тектонических разрывов и т. д. Эти неоднородности расчленяют массив на блоки размерами от сотен метров до километров.

Более мелкие блоки размерами от десятков сантиметров до десятков метров связаны с неоднородностями второго порядка.

К этому классу относят неоднородности структуры и состава пород в пределах одной пачки, слоя, а также естественную трещиноватость.

Трещинами называют разрывы в горных породах, перемещения по которым совершенно отсутствуют или очень незначительны. Совокупность трещин, расчленяющих тот или иной участок земной коры, называют трещиноватостью.

По степени проявления различают открытые, закрытые и скрытые группы трещин.

Открытые трещины имеют четко видимую полость, часто заполненную вторичными и гидротермальными минералами. Закрытые трещины характеризуются столь сближенными стенками, что хотя сам разрыв по ним хорошо прослеживается, полость по разрыву незаметна. Скрытые трещины, к которым, в частности, относится кливаж углей, визуально не видны, так как они очень тонки, но их можно обнаружить при разбивании или дроблении горных пород.

Естественные трещины обычно образуют в массиве системы или ряды. Трещины одной системы имеют параллельные или близкие к параллельным направления, но не могут пересекаться друг с другом. Если же трещины пересекаются даже под очень острым углом, то они должны быть отнесены к различным системам.

Часто встречаются две или три системы трещин, пересекающихся друг с другом под углами, близкими к прямым. При этом изменение в ориентировке одной из систем сопровождается соответствующим изменением другой. Такие взаимосвязанные системы трещин называются сопряженными системами.

Обычно в массиве горных пород можно выделить не менее трех систем трещиноватости. В ряде случаев число систем достигает пяти-шести и более.

Детальный анализ развития трещиноватости массивов горных пород различных месторождений показывает, что по линейным размерам трещин и сцеплению пород на их контактах выделяются три группы трещиноватости: крупноблоковая, мелкоблоковая и микротрещиноватость. Последняя группа принадлежит к неоднородностям следующих, более мелких (третьего и четвертого) порядков.

Трещины крупноблоковой трещиноватости имеют протяженность, исчисляемую десятками и даже сотнями метров. Протяженность отдельных трещин мелкоблоковой трещиноватости исчисляется метрами и дециметрами. Микротрещины невооруженным глазом не прослеживаются, но отчетливо видны в шлифах и аншлифах пород при их просмотре под бинокулярной лупой с восьмикратным увеличением или под микроскопом.

Различные массивы пород в разной степени расчленены трещинами. Среднее число параллельных трещин (отклонение элементов залегания ±10° от среднего по азимуту и по углу падения), приходящееся на единицу длины l (в направлении, перпендикулярном к трещинам), часто называют густотой или плотностью трещин. Это же число n = 1/ l называют также линейным модулем трещиноватости соответствующей системы трещин. Линейный модуль является критерием сравнительной оценки степени выраженности в массиве трещин той или иной системы.

Сравнительная оценка развития общей трещиноватости различных массивов или разных участков некоторого массива может быть выражена объемным модулем трещиноватости W, представляющим собой безразмерное отношение единичного объема массива 1 м3 к среднему объему V структурного блока:

К неоднородностям третьего порядка, кроме уже упоминавшейся микротрещиноватости, относятся также контакты между отдельными минеральными образованиями, зернами и кристаллами. При этом размеры блоков, образуемых неоднородностями данного типа, варьируют в пределах от единиц до десятков сантиметров.

Наконец, поскольку горные породы в большинстве своём представляют многокомпонентные поликристаллические агрегаты, выделяют четвертый порядок неоднородностей, связанный со структурными нарушениями межкристаллических областей, а также с дефектами структуры в решетках породообразующих минералов. Размеры структурных элементов в этом случае колеблются от долей миллиметра до нескольких сантиметров.

Всё изложенное позволяет говорить об общих закономерностях структуры, характерных для верхней мантии и земной коры, и проявляющихся в едином иерархически - блочном строении, которое можно проследить от планетарных структур типа континентов до микроструктур на уровне кристаллов и отдельных минеральных зёрен.

Между геометрическими и механическими характеристиками структурных неоднородностей массива также существует определенная связь: крупным, но более редким поверхностям неоднородностей соответствуют, как правило, более низкие значения прочностных характеристик.

Изложенное позволяет представить схему строения массива горных пород с учетом структурных неоднородностей различных порядков в виде некоторой пространственной конструкции, состоящей из плотно прилегающих друг к другу блоков с различной степенью связи между ними (рис. 2.3).

 

Рис. 2.3. Структурная схема массива горных пород.

a-г - деформирующиеся объекты различных линейных размеров.

1-4 - неоднородности соответственно первого - четвертого порядков.

 

Естественно, что влияние неоднородностей различных порядков на деформирование и разрушение каких-либо конкретных объектов далеко не равнозначно. Например, неоднородности нулевого и первого порядков на устойчивость горных выработок практически не влияют, поскольку размеры структурных блоков, образуемых неоднородностями этих порядков, во много раз превосходят размеры выработок. В то же время неоднородности второго порядка, в частности естественная трещиноватость, оказывают на устойчивость выработок весьма существенное влияние, обусловливая вывалы пород из стенок и кровли выработок.

Степень влияния того или иного порядка неоднородностей определяется соотношением размеров соответствующих структурных блоков и геометрических параметров деформирующихся объектов. При этом механизм деформирования массива пород блочной структуры заключается в деформировании самих блоков и, кроме того, в их взаимном скольжении и вращении. Последние могут проявляться, если масштаб деформируемого объекта соизмерим с размерами блоков, образуемых структурными неоднородностями того или иного порядка, и они принимают участие в деформировании.

На рис. 2.3 деформации объекта «а» определяются лишь деформационными характеристиками материала среды (т. е. с учетом неоднородностей только четвертого порядка), а объектов «б-г» - суммарным влиянием неоднородностей соответствующих порядков и материала среды.

Заметим, что обобщенных численных показателей, характеризующих степень влияния структурных неоднородностей различных порядков на свойства и деформирование горных пород и массивов, пока не имеется.

Вместе с тем имеющиеся данные экспериментов в массивах, сложенных различными породами, показывают, что наблюдается общая тенденция: - с увеличением объемов, вовлекаемых в процесс деформирования, модули деформации массива существенно снижаются, а значения деформаций возрастают.

Различие показателей свойств горных пород в зависимости от абсолютных геометрических размеров участков породного массива, обусловленное проявлением влияния неоднородностей различных порядков, называют масштабным. эффектом.

Масштабный эффект проявляется и при испытаниях образцов пород различных размеров. Например, даже при сравнении деформационных характеристик кристаллов минералов с соответствующими показателями мономинеральных кристаллических пород можно наблюдать снижение модулей упругости и деформации. Так, если модуль упругости кристалла кальцита равен Е = 12 105, то даже плотные мраморы имеют модуль упругости до Е = 10 105 кгс/см2. Модуль упругости кварца равен Е = 10,3 105, а кварцитов- - 9,2 105 кгс/см2.

В приведенных примерах четко прослеживается влияние неоднородностей четвертого порядка. Структурные неоднородности более низких порядков в ещё большей степени влияют на снижение значений деформационных характеристик.

На рис.2.4 в качестве примера приведена масштабная кривая изменения скорости продольных упругих волн, являющихся показателем степени упругости пород, в зависимости от исследуемого объёма породного массива, полученная для гранито-гнейсов одного из районов Кольского полуострова.

Рис.2.4 Масштабная кривая изменения скорости продольных волн с увеличением объёмов исследуемого массива пород для гранито-гнейсов одного из районов Кольского полуострова.

I - деформирование объёмов, включающих структурные неоднородности IV порядка (измерения методом ультразвукового прозвучивания на образцах стандартных размеров); II - деформирование массива, включающего структурные неоднородности III порядка (по данным ультразвукового каротажа в скважинах; III - деформирование массива с участием неоднородностей III порядка и ниже по результатам сейсмических измерений.

 

В некоторых случаях наблюдается также и качественное изменение характера деформирования пород. Так, например, если образцы ультраосновных пород - пироксенитов и перидотитов,- включающие структурные неоднородности только четвертого порядка, практически деформируются упруго вплоть до разрушения (рис. 2.5, а), то по мере увеличения области деформирования отчетливо начинают проявляться и вязкие свойства массива. Это выражается, в частности, в постепенном сближении боков выработок очистных блоков (рис. 2.5, б).

 

Рис. 2.5. Характер деформирования ультраосновных пород в зависимости от размеров деформирующихся объемов.

а - упругое деформирование образцов диаметром 40 мм (ОА-нагружение; AБ-разгрузка); б - развитие деформаций (сближения) стенок выработки u во времени t (1 - сближение реперов над выработанным пространством вертикального очистного блока высотой 40 м; 2 - то же, под выработанным пространством очистного блока).

 

Поскольку при оценке устойчивости выработок, целиков, откосов бортов карьеров и котлованов часто возникает необходимость характеризовать те или иные свойства массива по данным испытаний образцов в лаборатории, в практике находят применение так называемые коэффициенты структурного ослабления li, характеризующие степень снижения показателей соответствующих механических свойств массива пород вследствие наличия в массиве естественных трещин или других поверхностей структурных неоднородностей.

Наиболее употребителен коэффициент структурного ослабления, характеризующий отношение сцепления по контактам естественных трещин к сцеплению в монолитной породе. Этот коэффициент для широкого диапазона породных массивов достаточно устойчив, составляет 0,01-0,02 и наглядно иллюстрирует влияние неоднородностей второго порядка - крупноблоковой естественной трещиноватости - на прочностные характеристики массива пород. Для мелкоблоковой трещиноватости (третий порядок) коэффициент структурного ослабления составляет 0,1-0,2, а по микротрещинам (четвертый порядок) близок к 1.

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 2938; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.