Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические свойства мышц




БИОМЕХАНИЧЕСКИЕ СВОЙСТВА МЫШЦ

Работа, совершаемая силою, приложенной на одном плече рычага, передается на другое плечо.

Сила тяги мышцы, приложенная на коротком плече рычага, вызы­вает во столько раз большее смещение другого плеча, во сколько первое плечо короче второго; налицо выигрыш в пути. В связи с тем, что раз­ные пути проходятся за одно и то же время, здесь имеется выигрыш в скорости. Сила, передаваемая на длинное плечо рычага, как раз во столько же раз меньше, чем приложенная. Таким образом, выигрыш в скорости достигается за счёт проигрыша в силе. Почти все мышцы в теле человека прикрепляются вбли­зи суставов (короткое плечо рычага); это приводит к выигрышу в пути (а, следовательно, и в скорости) при проигрыше в силе. При большей части положений костного рычага мышечные тяги направлены под острым или тупым углом к звену (вдоль звена), что влечет невосполнимые потери в силе мышц (уменьшается вращающая тяга). Нормальная же (скрытая) тяга в этом случае способствует укреплению сустава, через который мышца переходит.

При больших нагрузках напрягаются все мышцы, окружающие сустав, в том числе и антагонисты. При этом резко возрастают потери в суммарной тяге мышц; в то же время достигается и положительный эффект — укрепление нагруженного сустава.

В связи с особенностями приложения мы­шечных тяг к костным рычагам необходимы весьма значительные напряжения мышц для выполнения не только силовых, но и скорост­ных д в и ж е н и и.

Входящие в биокинематические цепи звенья тела образуют системы составных рычагов, в которых «золотое правило» механики прояв­ляется намного сложнее, чем в простых одиночных рычагах.

Мышцы как физические тела обладают рядом механических свойствупругостью, вязкостью, ползучестью, релаксацией. Как биологические объекты мышцы проявляют свойства возбудимости и сократимости. Все названные свойства тесно взаимосвязаны, что важно учитывать при биомеханическом исследовании движений.

Упругость проявляется в возникновении напряжения в мышце при ее деформации под действием нагрузки. Вязкость — в замед­лении деформации внутренними силами (жидким трением, моле­кулярными силами).

На графике «длина — напряжение», полученном на изолированной мышце экспериментально (рис. 7, а), удобно рассмотреть упругость мышцы. Здесь видно, как по мере увеличения нагрузки мышца удли­няется и как при этом растет ее напряжение. Отсюда следует:

1 ) нагрузка (Р) растягивает мышцу, удлиняя ее (на Dl), т. е. для растягивания мышцы необходимо приложить силу;

2) по мере удлинения мышцы (на Dl) ее напряжение увеличивается (на DF); следовательно, чтобы вызвать напряжение мышцы (без дополнительного возбуждения), необходимо ее растянуть;

3) приложенная нагрузка (Р) определяет величину напряжения мышцы (F); таким образом, чтобы получить большое напряжение, надо приложить большую наг­рузку (сопротивление тяге мышцы) — действие равно про­тиводействию;

 

Рис.7. Графики «длина—напряжение» мышцы:

а — проявление упругости (зависимость дефор­мации и напряжения от нагрузки); б — прояв­ление вязкости («петли гистерезиса») (ориг.)

4) упругость мышцы нели­нейна (Dl2 больше Dl3 при рав­ных DF2 и DF 3); следовательно, по мере значительно­го растягивания оди­наковые приращения длины мышцы дают все большие прира­щения напряжения;

5) при отсутствии нагрузки длина мышцы (l) является наи­меньшей («свободная длина» мышцы) — нерастянутая мышца не напряжена;

6) в условиях организма длина мышцы (/о) больше «сво­бодной длины» и мышца не­сколько напряжена, т. е. всегда обладает «тонусом» покоя (F0).

Таковы особенности упругих свойств невозбужденной мышцы.

Вязкость мышцы как причину запаздывания деформации можно наблюдать по отклонению графика действительной деформации от линии зависимости «длина — напряжение» в установившемся состоя­нии (см. рис. 7, б— линия A). При меньшей вязкости (линии Б) изме­нение длины отстает от изменения напряжения как при растягивании мышцы (£i), так и при ее сокращении z). В этом случае мышца, хотя и не сразу, но все же возвратилась к исходному состоянию (точка l3). При большей вязкости (линии В) замедление еще больше и мышца не возвратилась к прежнему состоянию (точка l3) — обнаружилась остаточная деформация (расстояние l3 — l1).

Полученные кривые (Б, В) образуют так называемые «петли гисте­резиса», характеризующие запаздывание процесса деформации из-за тормозящего действия вязкости. При этом неизбежна потеря энергии. Она пропорциональна площади, ограниченной петлей гистерезиса (косая штриховка для Б1—Б z и вертикальная—для B1—Вz)- Действительно, площадь, определяемая произведением си­лы (напряжение) и пути (изменение длины), равна работе, затраченной на преодоление вязкости.

Ползучесть это свойство мышцы изменять с течением времени соотношение «длина — напряжение»: нагруженная (напряженная) мышца имеет соответствующую длину; через некоторое время при тех же нагрузках и напряжении эта длина уве­личивается.

Релаксация заключается в том, что растяну­тая мышца, сохраняя длину, постепенно с те­чением времени уменьшает свое напряжение, рас­слабляется.

Совокупность этих ме­ханических свойств (упруговязких, ползучести и релаксации) во всевозмож­ных сочетаниях в различ­ных условиях, в сущности, и есть то, что называется эластичностью 1 мышцы.

Высокоэластичной мышце свойственны зна­чительная растяжимость, большая жесткость при большом растягивании (нелинейная уп­ругость) и малые потери энергии (небольшая вязкость) при деформациях. И хотя механизм, обеспечивающий названные свойства, еще неполностью объяснен, их прояв­ления очень важно учитывать при изучении способов повышения эффективности действия мышц в движениях.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1041; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.