Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Третье началоКТД известно как теорема Нернста [77,78], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 3 страница




Ошибочная форма понятийного описания ускоренного движения определила, в свою очередь, порядок матема­тического доказательства неизменности ускорения α. Покажу, как оно логически проводится. Сначала опре­деляется масса тележки с отвесом M'.

М' = т' + т.

Уравнение движения под действием силы натяжения нити F записывается в виде:

М° = Mg – F, где M'a = F.

Исключив из этих уравнения F, найдем ускорение а:

а = Mg/ (М + М°) = kg,

где k = М/(М + М°) = const.

Полученный некорректный результат однозначно под­тверждает принятый постулат о неизменности ускоре­ния а и полное отсутствие взаимодействия с окружаю­щим пространством движущихся тел (тележки с отвесом). Поскольку k определяется делением неизмен­ных (?) масс (отмечу, что и массы изменяются, что не учитывается в данных рассуждениях), то он остается неизменным всегда, а вместе с ним остается постоянной величиной и ускорение а и сила инерции Р = М°а.

Теперь задачей наблюдателей становится подтвержде­ние «математически доказанной» неизменности ускоре­ния и силы инерции, а следовательно, и относительно­сти движения с постоянным ускорением. Вот как они справляются с этой задачей [65].

С точки зрения «неподвижного» наблюдателя (рис. 33,а): Поскольку отвес отклонен на постоянный угол а (это некорректно «доказывается» математически, но не экспериментально), он движется вместе с тележкой с постоянным ускорением а. Происхождение движения обусловлено действием на массу отвеса т силы та в го­ризонтальном направлении. Если F' сила натяжения ни­ти отвеса, то горизонтальная составляющая F'·sinα должна равняться та. То есть у неподвижного наблюда­теля даже мысли не возникает об экспериментальной проверке истинности математического доказательства. И он оперирует теми же математическими аргументами, основанными на постулате о том, что масса движуще­гося тела остается неизменной и в покое и в движении.

С точки зрения движущегося наблюдателя, отслежи­вающего как (предполагаемое теоретиком неизменное) отклонение отвеса на угол α, так и перемещение тележки относительно Земли, констатируется, что, поскольку отвес отклонен и покоится относительно тележки (то, что отвес покоится в движущейся с ускорением тележке, — тоже домысел теоретика), сумма всех действующих на него сил равна нулю. На отвес под углом друг к другу действуют сила земного тяготения F = mg и сила натя­жения нити F'. Их сумма компенсируется силой Fо = – та (рис. 33, б), равной по величине и противоположной по направлению сумме сил F' и mg, и наблюдатель движущийся «...в вагоне с наглухо закрытыми окнами... мог бы следить за движением отвеса, но ничего не знал бы о движении вагона.

Не зная, движется ли вагон с ускорением относитель­но коперниковой системы отсчета (точнее, не представ­ляя физического механизма движения с ускорением – А.Ч.), движущийся наблюдатель не мог бы утверждать, что отклонение отвеса объясняется действием сил инер­ции. С таким же основанием он мог бы предложить и другое объяснение: вагон на рельсах закреплен непод­вижно, но к нему справа приблизилась большая масса, сила тяготения которой и вызвала отклонение отвеса. Возможность двоякого истолкования поведения отвеса наблюдателем в вагоне с наглухо закрытыми окнами яв­ляется следствием эквивалентности сил инерции и сил тяготения», — утверждает вслед за предыдущими авто­рами профессор Хайкин [65].

И возвращаясь к движущимся вагонам (см. рис. 32), еще раз отмечу, что классическая механика рассматри­вает движение вагона с одним и тем же линейным при­бавлением скорости независимо от внешнего простран­ства и гравитационного поля. По ней вагон, движущийся с постоянным ускорением по горизонтальной поверхно­сти, и отвес в нем не взаимодействуют с гравиполем Земли и не испытывают никаких физических изменений, оста­ваясь тождественными своему состоянию покоя. И далее. По­скольку грузик отвеса взаимодействует с вагоном толь­ко через подвеску, то при ускоренном движении вагон постоянно «уходит» из-под отвеса на одну и ту же величину, которую фиксирует угол α. Поэтому при неизмен­ном линейном ускорении угол α остается постоянным. Для тела же, находящегося в вагоне, стремление вагона «уйти» из-под него фиксируется как инерциальная сила, действующая по горизонтали в направлении, противо­положном движению вагона. Векторная сумма инерциальной и гравитационной сил остается неизменной для ускоренного движения, но вес уменьшается с возраста­нием скорости по поверхности Земли, вызывающей по­явление силы, направленной вертикально вверх. И эти механистические фантазии называются классической механикой.

Неизменность веса при ускорении и не связанное с ускорением уменьшение его же с возрастанием скоро­сти и демонстрирует независимость ускорения от ско­рости и отсутствия связи между ними и гравитацион­ным полем пространства. Ускорение само по себе становится основной сущностью, не зависящей от про­странства, и затушевывает тот факт, что ощущаемое на­ми ускорение есть следствие взаимодействия с гравипо­лем Земли. В механике оно отражает только наблюдаемое изменение скорости за единицу времени относительно поверхности. И связано только со скоростью перемеще­ния. Скорость же, в свою очередь, жестко связана с на­пряженностью гравиполя, и именно гравиполе опреде­ляет механизм поведения тел. Рассмотрим этот меха­низм.

Прежде всего, движение тела-грузика в некотором направлении во внешнем гравиполе вызывает возраста­ние напряженности внешнего гравиполя, последнее сжимает грузик так же, как сжимается тело при па­дении. Деформация грузика сопровождается появлени­ем силы F° направленной в сторону, противоположную возрастающей напряженности. Именно сила, обусловленная возрастающей деформацией движущегося с постоянным ускорением тела, является силой инерции. А изменившаяся напряженность собственного гра­виполя тела есть наблюдаемое ускорение с обратным знаком.

Сила инерции Fо может быть рассчитана по уравне­ниям классической механики следующим образом. Поскольку грузик отвеса увлекается с постоянным ускорением а, деформация грузика сопровождается появлением силы Fо, направленной в противоположную сторону, то за промежуток времени t он приобретет скорость v' равную:

v' = vо + аt, (3.56)

где vо начальная скорость вагона (грузика).

Напряженность внешнего гравиполя на поверхности Земли определяется уравнением:

g = v2/R,

где v – первая орбитальная скорость.

Грузик, двигаясь по поверхности, будет менять свою напряженность g' по такому же закону:

g' = v'2/R. (3.57)

Или, подставляя в (3.57) значение v' из (3.56):

g' = (vо + аt)2 /R, (3.58)

где g' и есть то ускорение (собственная изменяемая напряженность гравиполя тела), которое определяет количественную величину силы инерции Fо. В отличие от изменяющегося линейно ускорения а ускорение g' возрастает по параболическому закону и вместе с ним возрастает сила Fо: Fо = mg'.

Сила Fо направлена против движения вагона и потому постоянно отклоняет грузик в этом направлении, последнее вызывает постоянное возрастание угла α. Именно изменение угла α можно замерить метром, транспортиром многими другими приборами и тем самым зафиксировать все особенности движения вагона с постоянным ускорением.

Таким образом, при движении по поверхности Земли с одним и тем же ускорением a фактическое ускорение g', обусловленное изменением напряженности гравиполя тела под действием гравиполя земли, будет постоянно возрастать, а вместе с ней и горизонтальная сила Fо, действующая на отвес.

Изменение напряженности собственного гравиполя грузика g' обусловливает возникновение подъемной силы, приводящей к уменьшению веса тела ∆Р при движении с постоянным ускорением:

∆Р = Р – Fо = mg – mg' = mv2/R – m(v + аt)2/R. (3.59)

При равенстве напряженности внешнего гравиполя g и напряженности гравиполя грузика g' вес тела становится как бы равным 0.

Отмечу, что ускорение g возникает не только при движении с ускорением, но и при всяком движении с постоянной скоростью по поверхности Земли, а это означает, что отвес принципиально никогда не будет находиться в вертикальном положении в аппаратах, движущихся по поверхности с постоянной скоростью. Эксперимент, подтверждающий это положение легко поставить в горизонтально летящем самолете.

Таким образом, в современной теории отсутствует взаимосвязь ускорения а с изменением напряженности собственного гравиполя движущихся тел g', что приводит к некорректному описанию механизма их движения и к непониманию сути движения тел. Но поскольку существует прямая взаимосвязь сил инерции Fо и тяготения Р, возникает вопрос: а не являются ли силы инерции и силы тяготения одной силой? И действительно ли существует в природе разделение масс не инертные и гравитационные? Основанием для разделения массы на инертную и гравитационную послужили факты падения различных тел с одинаковым ускорением и одинакового периода колебания различных тел, т.е. одинакового воздействия тел друг на друга при взаимном притяжении и возникновение таких же сил при вращении тела по окружности на нити.

Проявление одинаковых последствий при «различных» формах взаимодействия гравитационных и инерциальных, в которых участвовали массы и силы, позволили И. Ньютону сделать вывод, что в этих взаимодействиях участвуют различные виды не связанных между собой различных масс: инерциальных и гравитационных. Однако конечным итогом этих взаимодействий было появление сил, и было сделано предположение, что проявление силы без участия масс получить невозможно. Физи­ческое различие двух видов масс через силу прямо сле­дует из следующего пояснения:

«Под врожденной силой я разумею единственно только силу инерции. Она неиз­менна. Тяжесть же при удалении от Земли уменьшает­ся» [2].

Рассмотрим логику и обоснование разделения.

Сила F может быть получена из закона притяжения тела массой М' и Земли массой М:

F = М'МG/R2 = M'g, (3.60)

где G – гравитационная «постоянная»; R – расстояние между центрами тел; g – напряженность внешнего гра­витационного поля.

g = MG/R2. (3.61)

Поскольку формула (3.60) не имеет в своем составе параметра движения, но включает гравитационную «по­стоянную» G и описывает чисто гравитационное притя­жение масс, делается вывод, что участвующие во взаи­модействии массы (3.60) являются гравитационными.

С другой стороны, сила получается при вращатель­ном движении массы по инерции вокруг центра и опи­сывается уравнением:

F° = М'v2/R, (3.62)

где v - скорость движения тела по окружности. А по­скольку уравнение (3.62) не содержит гравитационных параметров, то и масса движущегося тела была посту­лирована инерциальной, а по массе и сила Fо, задейство­ванная в уравнении (3.62), тоже становится инерциаль­ной.

А так как в формулы (3.60) и (3.62) другие параметры не входят и отсутствуют (по крайней мере, отсутствова­ли в те времена) иные способы получения силы, то предположили, что сила возникает только в случае взаимодействия масс.

Ньютону было известно, что формула (3.62) описыва­ет результаты воздействия центробежной силы, возни­кающей при вращательном движении тела с ускорением а, равном:

а = v2/R (3.63)

Если теперь ускорение а приравнять g (a = g), то величины сил, получаемых по формулам (3.60) и (3.62), окажутся равными. А это уже может являться логиче­ским основанием для предположения равенства инертной и гравитационной масс. Это равенство и получило название принципа эквивалентности.

К тому же еще во времена Ньютона появилось подтверждение этому принципу, как следствие прирав­нивания друг к другу правых частей уравнений (3.60) и (3.62):

Mg = Rv2, (3.64)

и в левой части (3.64) получаем «чисто» гравитационную составляющую.

Инвариант (3.64) находится и при переносе из правой части в левую знаменателя в формуле (3.61):

R2g = MG. (3.65)

Инварианты (3.64) и (3.65), по-видимому, были известны во времена Ньютона, левую часть (3.65) он ис­пользовал для определения g в области Луны. Но не бы­ли известны способы образования данного инварианта с использованием других параметров, и потому он послу­жил дополнительным аргументом разделения масс на инертную и гравитационную.

Однако равенствами (3.64) и (3.65) не ограничиваются способы получения данного инварианта. Оказалось, что с использованием метода КФР ряд этого инварианта может включать любые физические параметры и обра­зовывать их бесчисленное количество сочетаний:

const – R2vω= v2g/ω2 = FG/g = FR2/M = v4/g … и т.д. (3.66)

Особенность данных инвариантов, как уже говорилось, заключается в том, что их попарное приравнива­ние друг другу обусловливает возможность получения формул относительно любого параметра. В нашем слу­чае искомым параметром является сила F. Приравняем из (3.66) инварианты с параметром F другим инвариан­там и получим формулы с параметром М:

F = Mvω = MRω2 = Mv2/R2ω =..., (3.67)

F = v2g22G = Mv2ω2/G = Mgv2/R2ω2 =... (3.68)

Можно ли, имея эти формулы, сказать, что в уравне­ниях (3.67) масса является строго инерциальной, а в уравнениях (3.68) только гравитационной? Вряд ли.

Если о системе (3.67) с какой-то степенью неуверен­ности и можно полагать, что она инерциальная, то сис­тема уравнений (3.68) содержит и инерциальные и гра­витационные параметры. А что делать с системой уравнений, включающих силу F при полном отсутствии массы М?

F = v4/G = Rv2g/G = R2g2/G = v2g2/Gω2 =... (3.69)

И хотя по Ньютону таких уравнений ожидать не сле­дует, они существуют и доказывают, что сила есть свой­ство тел и может проявляться при рассмотрении инвари­антной взаимосвязи любых иных свойств.

Что касается массы, то она может быть получена в различных сочетаниях параметров и инерциальных и гравитационных, даже из того небольшого набора инва­риантов, которые образованы выше:

М = v2g/Gω2 = F/vω = RF/v2 = R2g/G = W/Rg = gF/ω2v2 =...

Естественно, что эти зависимости свойств, а их коли­честве бесчисленно, получаются только потому, что они завязаны в одну систему. И в этой системе невозможно не только определить, но даже предположить существо­вание какого бы то ни было разделения массы на инерциальную, и гравитационную. А поскольку получается, что деление массы на инерциальную и гравитационную — формально-логическая ошибка, не адекватная приро­де, то существование так называемых инерциальных систем отсчета тоже становится сомнительным.

Полученные инварианты и уравнения можно количе­ственно проверить, подставив вместо индексов в (3.60)(3.69) количественную величину, например пара­метров Земли.

 

3.5. Абсолютность «относительного»

движения

 

Существование в классической механике неявного по­стулата о самонеподвижности тел, инертного веще­ственного простран-ства и отсутствия взаимодейст­вия тел с пространством привело к тому, что механическое движение тел, их перемещение в пространстве, оказалось невозможно привязать и к эфиру, и к пространству, поскольку движущиеся тела не взаи­модействовали с ними и оставались тождественными своему состоянию в покое. Последнее препятствовало возможности определения экспериментальными спосо­бами состояния покоя или равномерного прямолинейно­го движения приборами, находящимися внутри движу­щегося тела. Кажущаяся невозможность получения информации о движении привела к тому, что всякое движение тела по инерции (кроме света), т.е. равномер­ное прямолинейное движение без взаимодействия, было объявлено относительным.

Представление о невозможности обнаружения движе­ния с постоянной скоростью отсутствовало у Аристоте­ля, было впервые выдвинуто Галилеем и аргументиро­валось следующим образом:

«Заключите себя с каким-нибудь приятелем в зале под палубой какого-нибудь большого корабля... и заставьте привести корабль в движение с какой угодно быстротой. И вот (если движение будет равномерным) вы не заме­тите ни малейшей перемены во всех явлениях и ни по одному из них не в состоянии будете судить - движется корабль или стоит на месте..., прыгая, вы будете проходить по полу те же самые пространства, как при покое корабля..., капельки из подвешенной к потолку кружки будут падать вертикально, и ни одна из них не упадет ближе по направлению ккорме...; мухи будут продол­жать свои полеты безразлично во все стороны и проч.» [66].

Эта основанная на механистическом понимании дви­жения аргументация, предполагающая возможность движения без взаимодействия, была полностью воспри­нята Ньютоном, послужила основой для формирования содержания закона инерции и до сих пор разделяется всеми физиками.

Развивая аргументацию Галилея, Ньютон в своих «Началах...» в определении III так сформулировал со­держание инерции [2]: «Врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предостав­лено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения».

Попробую показать физическую и логическую проти­воречивость данной формулировки, а также отсутствие в ней определения физической сущности силы инерции. Суть этой формулировки заключается в словах: «Удер­живает свое состояние...»

Но «удерживать свое состояние покоя или равномер­ного прямолинейного движения» по механике возможно только в том случае, когда тело не «предоставлено са­мому себе», а находится среди «истинно неподвижных» или «истинно подвижных» тел, т.е. передвигается мимо них или испытывает на себе их воздействие. А так как у Ньютона нет объективных свидетельств о состоянии движения тел, то приходится, указывая пальцем, опре­делять, какие тела в пространстве «истинно покоящие­ся», а какие движущиеся относительно «истинно покоя­щихся». И сам Ньютон сетует на то, что и в этом конкретном случае, когда тела перед глазами, не исклю­чена ошибка в определении движения тела или его по­коя. Тем более она возможна, когда «тело предоставлено самому себе», и только опять же мысленно мы можем представлять, что оно «предоставлено самому себе». Но такое мысленное представление еще не означает, что те­ло находится само по себе и для себя в состоянии покоя или равномерного и прямолинейного движения, по­скольку это мысленное представление не есть доставка этого же тела из места, подверженного воздействию гравиполя, в место, где гравиполе отсутствует, ну как, например, груза на паровозе. И мы не можем, как для груза, заранее сказать, что это тело после такого пере­мещения останется тождественным само себе.

Мысленно же, вслед за Ньютоном, и до сего времени предполагается, что, совершив телепортацию из грави­поля во вне гравиполя, тело, как огурчик с поля, оста­нется само собой, чтобы демонстрировать нам прямоли­нейное (опять же мысленное) и равномерное (и снова мысленное) движение, которое по Ньютону невозможно обнаружить даже мысленно.

В этих мысленных операциях как-то забывается, что свойство «напряженность гравитационного поля» при­суще не только внешнему пространству, но и самому телу, что оно такое же врожденное свойство мате­рии, как и все остальные свойства, и без него простран­ство просто не существует. Что внешнее гравиполе такой же атрибут тела, как и его собственное грави­поле, и по этой причине исчезновение внешнего гравипо­ля равносильно исчезновению заключенного в нем тела. А посему все рассуждения, включая математические, о движении тела вдали от гравитационного поля, как и от гравитирующих масс, которыми охотно и часто балуют­ся физики, есть фикция, игра воображения, способная дать постную пищу уму, но не предлагающая никакого механизма объяснения инерции.

Покажу невозможность существования пробного тела вне гравиполя на примере подъема его с поверхности Земли и с перенесением на бесконечное расстояние R → ∞, на котором напряженность внешнего гравиполя стре­мится к g → 0. Эта зависимость описывается инвариан­том (3.65):

R2g – const,

и отсюда при

R →∞, g → 0.

С возрастанием расстояния между гравитирующим телом и пробным напряженность внешнего гравиполя уменьшается и на бесконечности обращается в 0, что и требовалось доказать для подтверждения невозможности отсутствия гравиполя по механике Ньютона.

Аналогичные доказательства часто фигурируют, есте­ственно математически более насыщенные, в теоретиче­ской физике. Однако они фигурируют как отдельные самостоятельные уравнения или группы уравнений, не связанные с другими свойствами систем, которые опи­сывают. Следствием является одностороннее понимание результатов доказательства. КФР все свойства связывает системно и, потому изменение одного свойства, позво­ляет определить, как это изменение отразится на других свойствах. Например, на массе т тела. Расстояние R свя­зано с массой т инвариантом

Rm2 – const,

и при

R → ∞, т → 0,

т.е. вместе с возрастанием расстояния от Земли до пробного тела, масса последнего будет уменьшаться и при R = ∞ станет т = 0. Таким образом, масса пробного тела, а вместе с ним и само тело, исчезает на бесконечности. Следова­тельно, формализован-ная система зависимости между параметрами взаимодейст-вующих тел приводит к тому же выводу, к которому привела диалектика качествен­ного анализа.

Все эти рассуждения потребовались для того, чтобы показать, что свойство инерции, понимаемое в механике как движение без взаимодействия, есть логический про­счет, ибо уже сама формулировка, включающая поня­тие «способность сопротивления», предполагает нали­чие некоторого взаимодей-ствия с пространством, какого-то механизма зацепления или удержания, посред­ством которого и происходит противодействие, некое «стремление» к сохранению телом своего состояния. И до тех пор, пока этот механизм не будет найдет и объяс­нен, представление об инерции будет оставаться пута­ным, неконкретным, туманным, и никакая формулиров­ка закона инерции не будет адекватна его природному аналогу.

Само представление о возможности прямолинейного движения возникло как следствие экстраполяции на­блюдаемого иногда в природе, относительно короткого, вызываемого искусственно, прямолинейного движения тел, на область вымышленного пустого пространства.

Вывод о возможности кратковременного искусствен­ного равномерного и прямолинейного движения следо­вал из некоторых экспериментов Галилея, и они-то по­служили основой Ньютону для использования в законе инерции.

Представление о равномерном прямолинейном дви­жении предполагает возможность движения без дви­жущего тела и существование независимых свойств движения. Оно придало скорости статус самостоя­тельного свойства, не связанного с ускорением и не за­висящего от него, а ускорению — возможность исче­зать при мыслимом равномерном движении.

Естественное, прямолинейное равномерное движение в природе не наблюдается вовсе. Это прямое следствие того, что все пространство пронизано гравитацион­ным излучением, не существует вне этого излучения и живет этим излучением. Тела же, движущиеся в гра­витационном пространстве под его воздействием, все­гда изменяют траекторию своего движения и потому принципиально не могут двигаться прямолинейно и рав­номерно. Именно это обстоятельство потребовало уда­ления движущегося по инерции без взаимодействия тела из гравитационного поля. Последнее же было возможно опять-таки только при вольном допущении, что тела не взаимодействуют с гравиполем, и по этой причине каче­ственно не меняются при удалении из него. Круг замк­нулся.

Вопрос об относительности движения с постоянной скоростью как о движении без взаимодействия мог воз­никнуть только при механистическом подходе к объяс­нению свойств и зависимостей природы. Этот вопрос предполагает существование независимых свойств, от­сутствие взаимодействия тела с пространством как в статике, так и в динамике, а, следовательно, самото­ждественность тела в состоянии относительного по­коя и движения, возможность прямолинейного движения, исчезновения гравитационного поля и неизменность тела в отсутствии гравитационного поля. Все эти по­сылки — прямое следствие экстраполяции выводов, сде­ланных на борту движущегося равномерно большого корабля, и не предполагают никаких качественных раз­личий в состоянии движущихся тел.

В соответствии с принципами диалектического мате­риализма качественные изменения играют определяю­щую роль в понимании процессов взаимодействия. В природе нет не взаимодействующих систем, и всякое движение есть либо следствие некоего взаимодействия, либо само по себе взаимодействие. Поэтому тело, по­коящееся на поверхности другого тела (например, в за­крытой тележке на поверхности Земли), имеет одну форму взаимодействия с ней, одно количество само­движения, одно качественное состояние. То же самое тело, движущееся с постоянной скоростью относи­тельно Земли, имеет другую форму взаимодействия, другое количество движения и иное качественное со­стояние. Оно не тождественно само себе. Все это вы­текает из диалектики. Однако данные диалектические рассуждения ничего не значат для физиков, если за ни­ми не будет стоять предложение конкретного экспери­мента, а лучше нескольких экспериментов, переводящих полуабстрактные, качественные, логически последова­тельные рассуждения в сухую эмпирику экспериментов. Позволяющих превратить качественную систематику в количественные сравнения достигнутых в опыте изме­нений показателей параметров тел в состоянии покоя и прямолинейного движения с постоянной скоростью.

Надо отметить, что именно абсолютная уверенность физиков в невозможности обнаружения равномерного движения тела приборами, находящимися внутри него, и стала причиной того, что такие эксперименты не проводились, ибо и без них теоретически ясно, что при­боры информации о движении не принесут. А потому их проводить — только деньгами сорить. Естественно, что деньгами сорить не стали. В результате этой уверенности три столетия никто не удосужился повторить экспе­рименты Галилея с использованием даже не капель воды и летающих мух (хотя и без экспериментов понятно, что в равномерно движущемся теле ни одна капля с потолка не попадет в то место, в которое она попадает в непод­вижном), а хотя бы гироскопа Фесселя или обыкновен­ного маятника, не говоря уже о более точных приборах.

Гироскоп Фесселя (рис. 34) представляет собой ротор 1, укрепленный на оси 2, которая свободно ставится на острие стойки 3. На противоположной от ротора стороне оси 2 устанавливается противовес 4, и ось может гори­зонтально вращаться. Когда ротор гироскопа раскручи­вается до стандартных оборотов, к оси подвешивают не­большой перегрузок 5, и под его воздействием гироскоп начинает прецессировать. При установившейся горизонталь­ной прецессии практически не будет наблюдаться нутации. Если теперь использовать этот гироскоп в тележке, а тележку двигать с постоянной скоро­стью, то уже при равномерной скорости в несколько десятков сантиметров можно будет на­блюдать регулярную нутацию ротора с максимумами и ми­нимумами в направлении движения

Рис. 34. и перпендикулярно ему. Эта нутация и регистрирует равномерное движение тела по поверхности, а, следовательно, и его абсолютность.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.057 сек.