Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ранг матриц и системы линейных уравнений




Пример 11.18. Найти ранг матрицы А. .

Т. 11.19. Теорема Кронер-Капелли: Система линейных уравнений совместна , когда ранг матрицы коэффициентов равен рангу расширенной матрицы системы. Доказательство: Пусть . Пусть эта система совместна. - решение. , . Пусть . тогда в А МЛНП системы столбцов содержит r столбцов, но т.к. это МЛНП в А, то все столбцы из А выражаются ч/з МЛНП. Но тогда и В выражается ч/з МЛНП. Значит эти r столбцов являются МЛНП системы столбцов матрицы . Значит . Обратно. Пусть . Рассмотрим МЛНП столбцов матрицы А. Ранги равны, значит она является МЛНП системы столбцов матрицы . Т.к. система выражается ч/з свою МЛНП, то мтолбец В выражается ч/з r столбцов матрицы А, значит ч/з все стобцы матрицы А. - решение системы , т.е. система совместна. ■

Т. 11.20. Структура решений систем линейных уравнений. Пусть дана система и столбец Х* - ее решение. Тогда произвольное решение Х1 этой системы имеет вид: Х1=Х*+ХО, где столбец ХО является решением однородной системы АХ=0, соотв. данной. Если Х* - решение данной системы, а ХО – решение соотв. однородной, то Х1=Х*+ХО – решение данной системы. Доказательство: Пусть Х* и Х1 – решение системы АХ=В. Обозначим ХО=Х1–Х*, АХО=А(Х1–Х*)=АХ1–АХ*=В–В=0 значит АХО=0, т.е. столбец ХО – решение соотв. однородной системы. Х1=Х*+ ХО. Обратно. Пусть АХ*=В и АХО=0, то А(Х*+ ХО)=АХ*+А ХО=В+0=В, Х*+ ХО решение системы АХ=В.

Следствие 11.21. Все решения системы АХ=В имеет вид Х*+ ХО, т.е. принадлежит множеству , где V – пространство решение, соотв. данной системы. Х*+V – линейное многообразие. Доказательство: доказано в 11.20. ■

Т. 11.22. (2 часть теоремы Кронер-Копелли) Если АХ=В – система с неизвестным и , то система имеет единственное решение. Если , то система в базисе бесконечного поля имеет бесконечное решение. Доказательство: Ранги равны, значит система совместна. если Х* - ее решение, то все решения имеют вид: если то , . если , то - число свободных переменных. V – это -мерное пространство над полем действительных чисел, значит V – бесконечно, значит X*+V – бесконечно. ■

 

 





Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 597; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.