Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой




Названные сплавы характеризуются сравнительно невысокой прочностью (ненамного превышающей прочность алюминия), высокой пластичностью и коррозионной стойкостью. Их применяют в тех случаях, когда требуется высокая пластичность – для изделий, получаемых глубокой штамповкой.

К рассматриваемой группе сплавов относят сплавы систем А1 – Мn (сплавы АМц) и А1 – Mg (сплавы АМг). Они не упрочняются термической обработкой.

Хотя система А1 – Мn (см. рис. 1.10) показывает переменную растворимость соединения Al6Mn в алюминии, однако в присутствии железа (неизбежное загрязнение) образуется тройное соединение А16(Mn, Fe), а оно нерастворимо в алюминии.

Марганец, в отличие от остальных элементов, не только не ухудшает коррозионной стойкости алюминиевого сплава, но несколько улучшает ее. Поэтому сплавы А1 – Mn превосходят чистый алюминий более высокой прочностью и коррозионной стойкостью.

Марганец вводят в дюралюминий (до 1%), как и в другие алюминиевые сплавы, главным образом, для повышения коррозионной стойкости.

Сплавы А1 – Mg при содержании до 1,4% Mg не упрочняются при термической обработке, что следует из кривой растворимости в системе А1 – Mg (см. рис. 1.10). При большем содержании (Mg > 3%)
упрочнение возможно, но эффект его невелик.

Магний является полезным легирующим элементом. Не считая повышения коррозионного сопротивления (если магния не более 3%), магний уменьшает плотность алюминиевого сплава (так как он легче алюминия), повышает прочность, не снижая его пластичность. Поэтому сплавы А1 – Mg получили распространение как несколько более прочные и легкие, чем чистый алюминий.

Эти сплавы в виде листов, а также прокатанного или прессованного материала поставляются в отожженном (мягком) состоянии (в марочном обозначении тогда добавляется буква М) после небольшой степени наклепа, т. е. полунагартованные (обозначаются буквой П), и после сильного наклепа, т. е. нагартованные (обозначаются буквой Н).

Пределы прочности и относительное удлинение для сплава АМц в различном состоянии:

Состояние..... М П Н

sв, МПа........ 130 160 220

d, %................ 23 10 5

 

5.2. Дюралюминий и другие деформируемые сплавы, упрочняемые термической обработкой

Дюралюминий [1] – наиболее распространенный представитель группы алюминиевых сплавов, применяемых в деформированном виде и упрочняемый термической обработкой.

Он содержит 4% Сu и 0,5% Mg, а также марганец и железо.

Дюралюминий – сплав, по крайней мере, шести компонентов: Al, Cu, Mg, Mn, Si и Fe, основными добавками являются медь и магний. Поэтому указанный сплав можно причислить к сплавам системы А1 – Cu –Mg. Кремний и железо являются постоянными примесями, попадающими в сплав вследствие применения недостаточно чистого алюминия.

Перечисленные компоненты образуют ряд растворимых соединений (следовательно, вызывающих старение), таких, как CuAl2, фаза S, Mg2Si, и нерастворимых, таких, как железистые и марганцовистые соединения.

Структура дюралюминия в отожженном состоянии (рис. 1.14, а)состоит из твердого раствора и вторичных включений различных интерметаллических соединений.

После закалки с оптимальных температур (500°С) основное количество соединений CuAl2 и Mg2Si растворяется в алюминии, но соединения железа не растворяются. Поэтому в закаленном состоянии структура состоит из твердого раствора и нерастворимых включений соединений железа (на микроструктуре рис. 1.14, б включения черного цвета).

При нагреве выше 500–520°С происходит оплавление зерен по границам; при охлаждении участки жидкой фазы превращаются в эвтектику (рис. 1.14, в).

Механические свойства после окончательной термической обработки (после закалки и старения) сильно зависят от температуры закалки (рис. 1.15). В результате повышения температуры закалки происходит растворение интерметаллических соединений, после закалки получается пересыщенный твердый раствор, а после старения – более высокая прочность. Нагрев же выше определенной температуры вызывает перегрев (рост зерна, окисление и оплавление границ зерна), что приводит к катастрофическому падению прочности и пластичности. Поэтому ясно, что при термической обработке дюралюминия важно соблюдать температурный режим закалки.

При термической обработке дюралюминия колебания температур закалки не должны превышать ±3–4°С.

Кривые старения дюралюминия приведены на рис. 1.9. Дюралюминий принадлежит к алюминиевым сплавам, естественно стареющим; наиболее высокие механические свойства у нормального дюралюминия получаются после старения при комнатной температуре в течение 5-7 сут.

Термическая обработка названных сплавов заключается в закалке примерно с 500°С в воде с последующим естественным (зонным) старением, т. е. детали из этих сплавов могут быть «готовы» лишь через пять – семь дней после закалки.

Так как коррозионная стойкость дюралюминия незначительна, то изыскивали различные способы для защиты его от этого процесса. Наиболее распространенный – плакирование чистым алюминием. Плакированный дюралюминий обладает такой же коррозионной устойчивостью, как чистый алюминий.

 

Рис. 1.14. Микроструктура дюралюминия:

а – отожженное состояние, × 200; б – закаленное состояние, × 100;
в – перегретое при закалке состояние, × 200

Рис. 1.15. Механические свойства дюралюминия в закаленном и состаренном
состояниях в зависимости от температурызакалки

 

По техническим условиям толщина плакированного слоя составляет 4–8% от толщины листа (или диаметра проволокилибопрутка). Естественно, что наличие на дюралюминии менее прочного слоя из чистого алюминия ухудшает прочностные свойства полуфабриката в целом, т. е. плакированный дюралюминий несколько менее прочен, чем неплакированный.

В настоящее время производят дюралюминий нескольких марок. Состав наиболее распространенных приведен в табл. 1.2.

 

Таблица 1.2




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1463; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.