Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства меди




На основе меди

Исследование зависимостей

Лабораторная работа № 2

«состав – структура – свойства» для сплавов

 

Цель работы: изучение микроструктуры и свойств меди и ее сплавов, установление связи между структурой, свойствами и диаграммой состояния, области применения меди и ее сплавов, установление связи между структурой и диаграммой состояния.

Приборы и материалы: коллекция протравленных и не травленых микрошлифов меди и ее сплавов и металлографический микроcкоп МИ-1.

Задания: 1. Ознакомиться с микроструктурой и свойствами меди и ее сплавов. 2. Изучить особенности диаграмм состояния меди и ее сплавов. 3. Изучить операции термической обработки меди и ее сплавов, влияние легировния на свойства и структуру сплавов меди. 4. Составить отчет о проделанной работе.

 

 

Медь – металл красновато-розового цвета, имеющий кристаллическую ГЦК решетку с периодом а = 0,3608 нм, без полиморфных превращений. Медь менее тугоплавка, чем железо, но имеет большую плотность.

Медь обладает хорошей технологичностью. Она прокатывается в тонкие листы и ленту, из нее получают тонкую проволоку, медь легко полируется, хорошо паяется и сваривается.

Медь характеризуется высокими теплопроводностью и электрической проводимостью, пластичностью и коррозионной стойкостью в атмосферных условиях, пресной и морской воде, едких щелочах, органических кислотах и других агрессивных средах.

Однако она взаимодействует с аммиаком, азотной, соляной, горячей концентрированной серной кислотами.

Примеси кислорода, водорода, свинца и висмута влияют на все свойства меди.

По ГОСТ в зависимости от содержания примесей различают следующие марки меди: М00 (99,99% Сu); М0 (99,97% Сu); M1 (99,9% Сu); М2 (99,7% Сu); М3 (99,5% Сu).

Наиболее часто встречающиеся в меди элементы подразделяют на три группы.

1. Растворимые в меди элементы Al, Fe, Ni, Sn, Zn, Ag повышают ее прочность и твердость (рис. 2.1) и используются для легирования сплавов на медной основе.

 

Рис. 2.1. Влияние легирующих элементов на твердость меди

 

2. Нерастворимые элементы Рb и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270°С), располагающиеся по границам зерен основной фазы, они вызывают красноломкость.

Вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001%. Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы.

Вредное влияние свинца также проявляется при малых его концентрациях (<0,04%). Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его используют для легирования.

3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, Сu2О, Сu2S), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости.

Кислород при отжиге меди в водороде вызывает «водородную болезнь», которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.

Механические свойства меди в большей степени зависят от ее состояния (табл. 2.1) и в меньшей – от содержания примесей.

Холодная пластическая деформация (достигающая 90% и более) увеличивает прочность, твердость, предел упругости меди, но снижает пластичность и электрическую проводимость. При пластической деформации возникает текстура, вызывающая анизотропию механических свойств меди.

 

Таблица 2.1

Механические свойства технической меди M1

Состояние sв, МПа s0,2, МПа d, % y,% НВ KCU, МДж/м2
Литое        
Деформированное*          
Отожженное           1,2–1,8

*Свойства проволоки, продеформированной на 90%.

Отжиг для снятия наклепа проводят при 550–600°С в восстановительной атмосфере, так как медь легко окисляется при нагреве.

По электрической проводимости и теплопроводности медь занимает второе место после серебра. Она применяется для проводников электрического тока и различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов.

Недостатки меди: невысокая прочность, плохая обрабатываемость резанием и низкая жидкотекучесть.

Общая характеристика и классификация медных сплавов

Для легирования медных сплавов в основном используют элементы, растворимые в меди, – Zn, Sn, Al, Be, Si, Mn, Ni.

Повышая прочность медных сплавов, легирующие элементы практически не снижают, а некоторые из них (Zn, Sn, A1) увеличивают пластичность.

Высокая пластичность – отличительная особенность медных сплавов. Относительное удлинение некоторых однофазных сплавов достигает 65%.

По прочности медные сплавы уступают сталям. Временное сопротивление большинства сплавов меди лежит в интервале 300–500 МПа, что соответствует свойствам низкоуглеродистых нелегированных сталей в нормализованном состоянии. И только временное сопротивление наиболее прочных бериллиевых бронз после закалки и старения находится на уровне среднеуглеродистых легированных сталей (sв = 1100–1200 МПа).

Медные сплавы подразделяют по:

технологическим свойствам (деформируемые (обрабатываемые давлением) и литейные);

способности упрочняться с помощью термической обработки (упрочняемые и не упрочняемые термической обработкой);

химическому составу (латуни и бронзы).

Медные сплавы маркируют по химическому составу, используя буквы для обозначения элементов и числа – для указания их массовых деталей.

В медных сплавах (так же как и в алюминиевых) буквенные обозначения отличаются от обозначений, принятых для сталей. Алюминий в них обозначают буквой А; бериллий – Б; железо – Ж; кремний – К; медь – М; магний – Мг; мышьяк – Мш; никель – Н; олово – О; свинец – С; серебро – Ср; сурьма – Су; фосфор – Ф; цинк – Ц; цирконий – Цр; хром – X; марганец – Мц.

Латуни (сплавы меди с цинком) маркируют буквой Л. В деформируемых латунях, не содержащих кроме меди и цинка других элементов, за буквой Л ставится число, показывающее среднее содержание меди. В многокомпонентных латунях после Л ставятся буквы – символы элементов, а затем числа, указывающие содержание меди и каждого легирующего элемента. Например, латунь Л68 содержит 68% Сu, латунь ЛАН59-3-2 содержит 59% Сu, 3% А1, 2% Ni (остальное Zn). В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставится непосредственно за буквой, обозначающей его. Например, латунь ЛЦ40МцЗА содержит 40% Zn, 3% Мn и 1% Аl.

Бронзы (сплавы меди со всеми элементами, кроме цинка) обозначают буквами Бр, за которыми ставятся буквы и числа. В марках деформируемых бронз сначала помещают буквы – символы легирующих элементов, а затем числа, указывающие их содержание. Например, БрАЖ9-4 содержит 9% Аl, 4% Fe, остальное – Сu. В марках литейных бронз после каждой буквы указывается содержание этого легирующего элемента. Например, БрО6Ц6СЗ содержит 6% Sn, 6% Zn, 3% Pb, остальное – Сu.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1060; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.