Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математичне моделювання




З курсу

Процентные точки распределения Стьюдента

q f 10% 5% 2% 1% q f 10% 5% 2% 1%
  6,31 12,71 31,82 63,66   1,94 2,45 3,14 3,71
  2,92 4,30 6,96 9,92   1,89 2,36 3,00 3,50
  2,35 3,18 4,54 5,84   1,86 2,31 2,90 3,36
  2,13 2,78 3,75 4,60   1,83 2,26 2,82 3,25
  2,02 2,57 3,36 4,03   1,81 2,23 2,76 3,17

 

 

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ДЛЯ ВЫПОЛНЕНИЯ ПРАКТИЧЕСКИХ РАБОТ

ПО ДИСЦИПЛИНЕ

«ПЛАНИРОВАНИЕ И ОРГАНИЗАЦИЯ НАУЧНОГО ЭКСПЕРИМЕНТА»

 

Подписано в печать Формат 60 ´ 84 / 16. Бумага для множ. аппаратов.

Печать плоская. Усл. печ. л. Уч. - изд. л. Тираж 100 экз.

ФГАОУ ВПО «Российский государственный профессионально-педагогический университет». Екатеринбург, ул. Машиностроителей, 11

Ризограф ФГАОУ ВПО РГППУ. Екатеринбург, ул. Машиностроителей, 11

 

 

 

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА ЗАСТОСУВАННЯ ЕОМ В ХІМІЧНІЙ ТЕХНОЛОГІЇ

 

Одеса – 2003

 

 

Луговський В.І, Конспект лекцій з курсу “Моделювання та застосування ЕОМ в хімічній технології” для студентів хіміко-технологічних спеціальностей. – Одеса: Одеський національний політехнічний університет, 2003. - 101 с.

 

 

Укладач: доц. кафедри ОФТ Луговський В.І.

 

Затверджено методичною комісією

хіміко-технологічного факультету ОНПУ

 

Зареєстровано в лабораторії інформаційних технологій ОНПУ

КЛ-470 № 978-РС-2003

Скопійовано з оригіналу-макета, наданого автором


 

 

ХІМІКО-ТЕХНОЛОГІЧНИХ ПРОЦЕСIВ

 

1.1. Загальні поняття

 

Моделювання - це вивчення об’єкту шляхом побудови і дослідження його моделі, здійснюване з певною метою і складається у заміні експерименту з оригіналом експерименту на моделі.

Модель повинна будуватися так, щоб вона найбільш повно відтворювала ті якості oб’єкта, які необхідно вивчити у відповідності з поставленою метою. В усіх відносинах модель повинна бути площе об'єкту та зручне для його вивчення.

Таким чином, для одного й отого ж об’єкту можуть існувати різноманітні моделі (клас моделей),відповідні різноманітним цілям його вивчення.

Необхідною умовою моделювання є подобiє об’єкту та його моделі. Від спеціаліста, що займається побудовою моделей, вимагаються слідуючи основні якості:

– чітке уявлення про cутність фізико-хімічних явищ, протікаючих в об’єкті;

– уміння математично описувати протікаючи процеси та застосовувати засоби моделювання;

– бути у стані забезпечити одержання на моделі змістовних результатів.

 

Цілі і завдання моделювання:

1. Оптимальне проектування нових та інтенсифікація діючих технологічних процесів.

2. Контроль за ходом процесу, одержання необхідної інформації про нього та обробка одержаної інформації з метою управління ходом технологічного процесу.

3. Рішення задач дослідження об'єктів, де ніяк не можна проводити активні експерименти (режими роботи реакторів, траєкторії космічних об’єктів і т. д.).

4. Максимальне прискорення переносу результатів лабораторних досліджень в промислові масштаби.

Вимоги до моделі:

1. Витрати на утворення моделі повинні бути значно менш витрат на утворення оригіналу.

2. Повинні бути чітко визначені правила iнтерпретації результатів обчислювального експерименту.

3. Основна вимога - модель повинна бути істотної. Ця вимога укладається в тому, що модель повинна відбивати необхідні, істотні для рішення конкретного завдання властивості об'єкту. Для одного й отого ж об'єкту cкладно створити узагальнену модель, що відбиває всі його властивості. Тому важливо забезпечити істотність моделі.


1.2. Класифікація моделей.

 

Класифікацію моделей можна проводити по різним типам ознак:

- по способу пізнання: науково-технічні, художні, життєві.

- по природі моделей: предметні (фізичні / матеріальні);

знакові (уявні).

 

Матеріальні моделі - зменшене (збільшене) відбивання оригіналу з збереженням фізичної суттєвості (реактор - пробiрка). Уявна модель -видображення оригіналу, що відбиває істотні риси і що виникає у свідомості людини в процесі пізнання. Образні моделі носять описовий характер. Знакові моделі — є математичними описами процесів, явищ, об’єктів і звичайно називаються математичними моделями. Знакові моделі можуть також включати у себе схеми та креслення наприклад,

Рис. 1. 1 схема з рециклом (рис.1.1)

Математична модель - сукупність математичних залежностей, суттєвість,

що відбивається у явній формі технологічного процесу, т.є., всі істотні параметри технологічного об’єкту пов'язані системою математичних порівнянь.

По повноті відбивання внутрішніх властивостей об'єкту моделювання моделі поділяють на динамічні та статичні.

Динамічні моделі в основному використовуються при розробці систем автоматизованого управління процесами, бо вони враховують перехідні характеристики об'єкту.

Статичнімоделі описують стаціонарні (що установилися) процеси. По використовуваному математичному апарату математичні моделі поділяються на:

1. детерміновані - при зміні будь-якого параметра значення вихідних величин визначаються однозначно.

2. статистичні - результат визначається з визначеною мірою вірогідності (т. є. неоднозначно визначається заданими параметрами).

 


1.3. Фізичне моделювання

 

Фізичне моделювання - це засіб дослідження на моделях, що мають однакову фізичну природу з об'єктом моделювання, тобто. становлять деякий макет об'єкту, що вивчається. Фізичні моделі відтворюють увесь комплекс властивостей явищ об'єкту.

В фізичному моделюваннi важливу роль грає теорія подобiя. Її основне положення: необхідне фізичне подобiє моделі та об'єкту забезпечується лише при рівності всіх однотипних комплексів,що визначаються безрозмірних комплексів (критеріїв подобiя) у східних точках моделі та об'єкту. При фізичному моделюваннi в додаток до геометричного подобія

передбачається подобiє швидкостей, сил, матеріальних середовищ і т.п.

При моделюваннi на основі засобу подобiя безрозмірни комплекси грають двояку роль. По-перше, на їх основі визначають, коли модель подобна оригіналу, при цьому комплекси служать власно критеріями подобiя. По-друге, значення отих

же комплексів у подібних точках і є ота кількісна міра, що і переноситься з моделі на об'єкт.

Розглянемо деякі часто використовувані критерії подобiя:

- Критерій Рейнольдса (критерій гідродинамічного подобiя):

Re = W L/ V

де W - швидкість потоку,

L - розмір, що визначається,

V - кiнематична в’язкість середи.

 

- Критерій Нуссельта (критерій теплового подобiя):

Nu = a L / l

де a - коефіціент теплоотдачi,

l - коефіціент теплопровідностi,

L - розмір, що визначається.

 

Критерії подобiя дозволяють установити аналогію між різними явищами.

Можливість фізичного моделювання визначається наступною залежністю:

f = A – R.

де f - число мір волі,

A - кількість параметрів, критеріїв, що характеризують процес,

R - число критеріїв подобiя, які необхідно підтримувати рівними у

процесі дослідження.

Якщо число мір волі f < 0 - оте застосовувати фізичне моделювання не можна, бо немає волі вибору параметрів моделі.

Достоїнства засобу фізичного моделювання:

- наочність – фізична модель відтворює практично всі сторони оригіналу;

- можливо вивчення процесу без складання його математичного опису;

- можливість відтворення виробничого процесу у лабораторних умовах.

Недоліки засобу фізичного моделювання:

- відсутність унiверсальностi – для кожного нового процесу необхідно

створювати нову модель;

- висока вартість моделей для дослідження складних процесів;

- неможливість застосування цього засобу для моделювання більшої частини хімічних процесів та реакторів, а також інших складних об'єктів.

 

Більш докладно зупинимося на останній нестачі. Застосування теорії подобiя дозволяє сформулювати вимоги до моделі, задоволення яких забезпечує можливість кількісного розповсюдження результатів експерименту з моделі на оригінал. Але в отих випадках, коли процес у оригіналі складний, задовольнити цим вимогам виявляється дуже тяжко. Коли число критеріїв, що визначають подобiє, достатньо велика, побудова подібної моделі стає нереальною задачею. Саме цим визначаються труднощі, виниклі при спробах застосування засобу подобiя для моделювання хімічних процесів та реакторів.

Рядом дослідників були сформульовані критерії подобiя для наданого класу процесів. Але опинилося, що в переважній більшості випадків ці процеси

настільки важки, що для дотримання подобiя моделі та оригіналу вимоглося би

iдентичність дуже великого числа критеріїв подобiя зразу, забезпечити яку

практично неможна.

У вигляді прикладу розглянемо систему, у якій тече хімічна реакція.

Виходячи з теорії подобiя, для такої системи можна скласти критерії подобiя,

зокрема критерій Рейнольдса Re= W L/ V, що характеризує гідродинамічний режим, критерій Дамкеллера Da = r L / (W C), що характеризують хімічне перетворення та ін.

В наданих критеріях

C – концентрація вихідної речовини, що реагує,

r – швидкість хімічної реакції.

Інші позначення приведені вище.

Критерії Re, Da (інші критерії в цілях спрощення не розглядуються) характеризують систему, що вивчається. Однак ці критерії несумісні між собою, оскільки при Re = const величина W протилежно пропорційна, а при Da = const – прямо пропорційна величині L. З приведеного зіставлення слідує, що для збереження гідродинамічного подобія швидкість струму W повинна змінюватися назад пропорційно, а для збереження хімічного подобiя - прямо пропорційно лінійному розміру L. Природно, що в одному й отому ж процесі це ніяк. Причина цього лежить не в невдалому виборі критеріїв подобiя, а у неможливості, у загальному випадку, зберегти однаковим вплив фізичних факторів на швидкість хімічного перетворення у реакторах різноманітного масштабу.

В дійсності, у складних системах зміна масштабу викликає, як правило,

зміну структури системи та характеру вдачі протікаючих у неї процесів. Всім відоме існування критичних розмірів системи, що містить U-235 та U-238. Ці розміри визначають співвідношенням між числом що створюються при діленні нейтронів та числом поглинаємих та відходящих назовні. З збільшенням масштабу частка часток, що губляться зменшується та змінює характер протікання процесу - замість повільного ділення наступає вибух.

В хімічному реактор швидкість власне хімічного перетворення не залежить від розмірів реакційної системи. Але протікання хімічної реакції приводить до зміни складу та температури. Наслідком цього є виникнення процесів переносу речовини та тепла, бистрота яких надто істотно залежить від

розмірів системи. Склад та температура у свою чергу дуже сильно впливають на бистроту хімічної реакції.

Внаслідок виникає дуже складна залежність умов протікання хімічного процесу від розмірів апарату. Причому зміна розміру реактора може значно змінити як загальну швидкість процесу, так і співвідношення швидкостей реакцій, які приводять до різноманітних продуктів реакції, т. є. вибірність процесу.

Таким чином, можна зробити висновок, що неможливість використання

засобу фізичного моделювання для хімічних реакторів пояснює несумісністю умов

подобiя фізичних та хімічних що складають процес. Цей висновок справедлив для більшості хімічних процесів та реакторів. Лише у випадку, якщо швидкість хімічного процесу не впливає на швидкість сумарного процесу наприклад, каталiтичнi процеси у галузі зовнішньої дифузії), критерії хімічного подобiя випадають та застосування теорії подобiя стає можливим.

Крім отого, широко використовується фізичне моделювання гідродинамічних та теплових процесів, протікаючих в отих частинах реактора, де хімічне перетворення відсутнє (наприклад, розподілені та змішувальні будови та ін).

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1747; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.