Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи, связанные с взаимным расположением прямых




Рассмотрим некоторые задачи аналитической геометрии, которые связаны с взаимным расположением прямых в пространстве.

ЗАДАЧА 2. Найти угол между пересекающимися (скрещивающимися) прямыми в пространстве.

ОПРЕДЕЛЕНИЕ. Углом между двумя скрещивающимися прямыми и называется угол между прямой и проекцией прямой на любую плоскость, проходящую через прямую .

Иначе говоря, угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, параллельными данным.

 

Пусть даны две пересекающиеся или скрещивающиеся прямые:

: и : .

Обозначим , – направляющие векторы первой и второй прямой соответственно.

Так как один из углов между прямыми равен углу между их направляющими векторами, а второй угол , то углы и могут быть найдены по формуле

,

или ,

где знак плюс берется в том случае, когда надо найти величину острого угла, а знак минус – когда надо найти величину тупого угла.

 

ЗАДАЧА 3. Найти расстояние от точки до прямой в пространстве.

Пусть дана прямая

:

и – точка, не принадлежащая этой прямой. Обозначим – направляющий вектор прямой , – точка на прямой , – расстояние от точки до .

Рассмотрим параллелограмм, построенный на векторах и . Тогда – высота этого параллелограмма, опущенная из вершины . Следовательно,

.

 

ПРИМЕР. Найти расстояние от точки до прямой : .

Из условия задачи имеем: , . Тогда

,

,

, ,

– искомое расстояние.

 

ЗАДАЧА 4. Найти расстояние между скрещивающимися прямыми.

ОПРЕДЕЛЕНИЕ. Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

Пусть даны две скрещивающиеся прямые

: и : ,

и – расстояние между и .

Построим плоскость , проходящую через прямую параллельно . Тогда – расстояние от прямой до плоскости . Найти это расстояние можно по формуле:

,

где – общее уравнение плоскости ,

– любая точка на прямой .

ПРИМЕР. Найти расстояние между двумя прямыми

: и : .

1) Прежде всего, установим взаимное расположение данных прямых. По условию задачи: и – направляющий вектор и фиксированная точка первой прямой, и – направляющий вектор и фиксированная точка второй прямой; . Имеем:

1) – прямые не параллельны;

2) вычислим :

.

Следовательно, данные прямые являются скрещивающимися.

2) Запишем уравнение плоскости , проходящей через прямую параллельно :

: .

Тогда – расстояние от точки до плоскости :

.

 

 

Замечание. Предложенный способ нахождения расстояния между скрещивающимися прямыми – не единственный. Можно найти это расстояние, используя векторную алгебру.

 
 

Действительно, построим на векторах , и пирамиду.

Тогда – высота пирамиды, опущенная из точки и, следовательно,

 

 

ЗАДАЧА 5. Найти точку пересечения прямых.

Пусть даны две пересекающиеся прямые

: и : ,

– точка пересечения прямых. Тогда – решение системы уравнений

или, переходя к параметрическим уравнениям прямой,

 

 

ПРИМЕР. Найти точку пересечения прямых

: и : .

 

1) Прямые и не являются параллельными (их направляющие векторы не коллинеарны) и для них выполняется условие (9):

.

Следовательно, прямые и – пересекаются.

2) Найдем точку пересечения прямых. Для этого перейдем к их параметрическим уравнениям:

: и :

и решим систему

, ;

, , .

Таким образом, точкой пересечения прямых является точка




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.032 сек.