Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение неравенств




Для аналитического решения неравенств в MathCAD используется тот же самый оператор solve, расположенный на панели Symbolic (Символьные), что и для решения уравнений.

Пример 5. Требуется решить неравенство вида: в символьном виде.

Решение. Процесс решения задачи можно свести к выполнению следующих шагов:

1. Выполнить команду solve, расположенную на панели Symbolics (Символьные).

2. Заполнить предоставленный шаблон.

3. Проанализировать результат.

4. Решение неравенства из примера 5 предоставлено системой в виде, как это показано на рис. 6.10.

Рис. 6.10. Решение неравенства

 

Полученное решение соответствует следующей записи в стандартной форме: .

 

Как вы уже, наверное, заметили, MathCAD выдает ответы в несколько отличном, от принятом в нашей математике, виде. Поэтому зачастую самой трудной частью работы при символьном решении неравенств является интерпретация результата. Тут нужно запомнить несколько правил:

1. Ответ оператор solve возвращает в виде вектора, содержащего элементарные неравенства. Каждое такое неравенство описывает область, в которой решаемое неравенство справедливо.

2. Если область открытая (то есть одной из ее границ является бесконечность), то задающее ее элементарное неравенство будет иметь вид х>а или х<а. В стандартном виде такие области запишутся как или .

3. Если область замкнута и ее границам соответствуют значения аргумента а и b, то она будет описана элементарным неравенством вида . В стандартном виде эта запись будет выглядеть как .

4. Области в векторе ответа будут расположены строго в направлении числовой оси. Поэтому преобразовывать в стандартную форму его можно чисто механически, сохраняя исходный порядок областей. Для объединения обозначений областей в одно выражение используется символ «».

Пример 6. Требуется найти область определения функции .

Решение. Как известно, под областью определения функции понимают совокупность значений аргумента, при которых выражение, определяющее функцию, имеет смысл. Область определения заданной функции определяется из следующих условий:

· аргумент логарифма может принимать только положительные значения;

· знаменатель у дроби, стоящей под знаком логарифма не должен обращаться в нуль (х ¹2);

· числитель не должен обращаться в нуль (х ¹1).

На начальном этапе можно решить неравенство . А затем из полученной области исключить точки –1 и 2. Решение неравенства:

Что соответствует области: . В исключении точек
–1 и 2 нет необходимости, так как они не входят в означенную область.

Пример 7. Требуется найти область определения функции . Если имеются точки разрыва, то установить тип разрыва.

Решение. Поскольку аналитическое выражение функции представлено в виде дроби, а знаменатель дроби не может быть равен 0, из области определения функции следует исключить точку , т.е. . Т.е. точка является точкой разрыва. Чтобы найти тип разрыва следует найти односторонние пределы (команды следует взять с панели Calculus (Вычислить)):

Вывод. Так как односторонние пределы равны ¥, то имеет место неустранимый разрыв 2-го рода, а точка является точкой бесконечного скачка функции.

Пример 8. Требуется найти все асимптоты графиков функции . Найти подтверждение правильности решения на графике функции.

Решение. Известно, если точка является точкой бесконечного разрыва функции, то прямая есть вертикальная асимптота графика функции. В предыдущем примере было установлено, что точка является такой точкой бесконечного разрыва. Следовательно, прямая является вертикальной асимптотой графика заданной функции. Для получения наклонных асимптот нужно вычислить пределы: . Если эти пределы существуют, то прямая есть наклонная асимптота графика функции. Вычисление пределов и уравнение наклонной асимптоты представлены на
рис. 6.11.

 

Рис. 6.11. Вычисление параметров наклонной асимптоты

Таким образом, уравнение наклонной асимптоты имеет вид: . Анализ построенного графика функции и ее асимптот, представленного на рис. 6.12, показывает, что расстояния текущей точки кривой до каждой из асимптот стремится к нулю по мере удалении этой точки по кривой в бесконечность, что соответствует определению асимптоты.

Следует обратить внимание на формулу в определении вертикальной асимптоты, представленной на рис. 6.12. Здесь значение функции равно х, а область аргумента соответствует постоянному значению –1.

Рис. 6.12. Графическая интерпретация связи графика с асимптотами

Пример 9. Требуется на графике функции найти точки, подозрительные на экстремум (критические точки).

Решение. Воспользуемся необходимым условием существования экстремума: если функция непрерывна в точке х0 и ее окрестности и принимает в этой точке экстремальное значение, то первая производная f ’(х 0) либо равна нулю или бесконечности, либо не существует. Следовательно, для того, чтобы найти точки, подозрительные на экстремум, следует найти решение уравнений: и . Решение представлено на рис. 6.13.

 

Рис. 6.13. Определение критических точек графика функции

Из предоставленных решений берем только действительные корни:

.

Пример 10. Требуется на графике функции найти точки, подозрительные на точки перегиба. Найти подтверждение правильности решения на графике функции.

Решение. Необходимое условие точки перегиба: если х 0 – точка перегиба кривой y = f (х), то вторая производная f’’ (х 0) либо равна нулю или бесконечности, либо не существует. Решение представлено на
рис. 6.14. На рис. 6.15 изображены функция и ее вторая производная.

Рис. 6.14. Определение точек перегиба графика функции

Рис. 6.15. Графика функции F(x) и ее второй производной F2(x)

 

Пример 11. Требуется найти максимум функции при ограничениях, заданных неравенствами вида: .

Решение. Для решения поставленной задачи можно воспользоваться следующей схемой [20]:

1. Определить функцию.

2. Задать начальные условия.

3. Инициировать блок решения, в котором:

a. Задать ограничения.

b. Вычислить максимальное значение функции с помощью стандартной функции maximize, описанной в примере 2 главы 5.

4. Отобразить результат вычислений.

Решение представлено на рис. 6.16.

 

Рис. 6.16. Решение неравенства




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 547; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.