Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методика не предусматривает включение новых задач, удаление старых, изменение последовательности выполнения задач. Методика необязательна, может считаться фирменным стандартом




Приведенные примеры стандартов дают представление о подходах к решению проблем стандартизации. Естественно затраты на стандартизацию могут сделать проектные работы по внедрению информационных технологий более дорогостоящими, однако эти затраты с лихвой окупаются в процессе эксплуатации и развития системы, например при замене оборудования или программной среды. Таким образом, стандартизация является единственной возможностью обеспечения порядка в бурно развивающихся информационных технологиях.

Контрольные вопросы

1. Перечислить основные составляющие информационных технологий.

2. Какие компоненты входят в структуру информационных технологий?

3. Какие компоненты являются ядром информационной технологии?

4. Перечислить средства реализации информационных технологий.

5. Что относится к программным средствам реализации информационных технологий?

6. Что относится к техническим средствам реализации информационных технологий?

7. Что относится к методическим средствам реализации информационных технологий?


Тема 5 Дополнительная литература:  
Базовые информационные технологии: геоинформационные и CASE- технологии  
  Содержание  
Понятие и структура базовой информационной технологии Геоинформационные технологии CASE-технологии  
         

Понятие и структура
базовой информационной технологии

Базовые технологии – технологии, которые определяют суть производственной деятельности.

Как базовая информационная технология в целом, так и отдельные информационные процессы могут быть представлены тремя уровнями: концептуальным, логическим и физи­ческим. Концептуальный уровень определяет содержательный аспект информационной технологии или процесса, логический - отображается формализованным (модельным) описанием, а физический уровень раскрывает программно-аппаратную реализацию информационных процессов и технологии.

К базовым информационным технологиям относятся:

1. Геоинформационные технологии

2. CASE-технологии

3. Мультимедиа технологии

4. Технологии защиты информации

5. Телекоммуникационные технологии

6. Технологии искусственного интеллекта

и т.д.

Геоинформационные технологии

В настоящее время в соответствии с требованиями новых информационных технологий создаются и функционируют многие системы управления, связанные с необходимостью отображения информации на электронной карте:

• геоинформационные системы;

• системы федерального и муниципального управления;

• системы проектирования;

• системы военного назначения и т.д.

При решении задач социального и технического регулирования в системах управления используется масса пространственной ин­формации: топография, гидрография, инфраструктура, коммуника­ции, размещение объектов.

Геоинформационные технологии предназначе­ны для широкого внедрения в практику методов и средств работы с пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Основным классом данных геоинформационных систем (ГИС) являются координатные данные, содержащие геометрическую ин­формацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (не­замкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.).

Основой визуального представления данных при использова­нии ГИС-технологий является графическая среда, основу которой составляют векторные и растровые (ячеистые) модели.

Векторная модель содержит информацию о местоположении объекта, а растровая о том, что расположено в той или иной точке объекта. Векторные модели относятся к бинарным или квазибинарным. Растровые позволяют отображать полутона.

Основной областью использования растровых моделей является обработка аэрокосмических снимков.

Цифровая карта может быть организована в виде множества слоев (покрытий или карт подложек). Слои в ГИС представляют набор цифровых картографических моделей, построенных на основе объединения (типизации) пространственных объектов, имею­щих общие функциональные признаки. Совокупность слоев обра­зует интегрированную основу графической части ГИС.

Основные области использования ГИС:

• электронные карты;

• городское хозяйство;

• государственный земельный кадастр;

• экология;

• дистанционное зондирование;

• экономика;

• специальные системы военного назначения.

CASE-технологии

На данный момент в технологии разработки программного обеспечения существуют два основных подхода к разработке ин­формационных систем, отличающиеся критериями декомпозиции: функционально-модульный (структурный) и объектно-ориентиро­ванный.

Функционально-модульный подход основан на принципе алгорит­мической декомпозиции с выделением функциональных элементов и установлением строгого порядка выполняемых действий.

Объектно-ориентированный подход основан на объектной де­композиции с описанием поведения системы в терминах взаимо­действия объектов.

Под CASE-технологиеи будем понимать комплекс программных средств, поддерживающих процессы создания и сопровождения программного обеспечения, включая анализ и формулировку тре­бований, проектирование, генерацию кода, тестирование, докумен­тирование, обеспечение качества, конфигурационное управление и управление проектом (CASE-средство может обеспечивать под­держку только в заданных функциональных областях или в широ­ком диапазоне функциональных областей).

Современные CASE-средства поддерживают процессы инжиниринга и автоматизированного реинжиниринга.

Идеальное объектно-ориентированное CASE-средство должно содержать четыре основных блока: анализ, проекти­рование, разработка и инфраструктура

Основные требования к блоку анализа:

• возможность выбора выводимой на экран информации из всей совокупности данных, описывающих модели;

• согласованность диаграмм при хранении их в депозитарии;

• внесение комментариев в диаграммы и соответствующую до­кументацию для фиксации проектных решений;

• возможность динамического моделирования в терминах со­бытий;

• поддержка нескольких.

Основные требования к блоку проектирования:

• поддержка всего процесса проектирования приложения;

• возможность работы с библиотеками, средствами поиска и выбора;

• возможность разработки пользовательского интерфейса;

• поддержка стандартов OLE, ActiveX и доступ к библиотекам HTML или Java;

• поддержка разработки распределенных или двух- и трехзвенных клиент-серверных систем (работа с CORBA, DCOM, Internet).

Основные требования к блоку реализации:

• генерация кода полностью из диаграмм;

• возможность доработки приложений в клиент-серверных CASE-средствах типа Power Builder;

• реинжиниринг кодов и внесение соответствующих измене­ний в модель системы;

• наличие средств контроля, которые позволяют выявлять не­соответствие между диаграммами и генерируемыми кодами и обна­руживать ошибки как на стадии проектирования, так и на стадии реализации.

Основные требования к блоку инфраструктуры:

• наличие репозитория на основе базы данных, отвечающего за генерацию кода, реинжиниринг, отображение кода на диаграммах, а также обеспечивающего соответствие между моделями и про­граммными кодами;

• обеспечение командной работы (многопользовательской ра­боты и управление версиями) и реинжиниринга.


Тема 6 Дополнительная литература:  
Базовые информационные технологии: мультимедиа технологии  
  Содержание  
Понятие мультимедиа Мультимедиа технологии Программные средства создания проектов Аппаратные средства создания проектов Мультимедийный компьютер    
         

Понятие мультимедиа

Слово мультимедиа в буквальном переводе означает много средств для представления информации пользователю.

Термин мультимедиа используют для характеристики компьютерных систем, графической, звуковой, видео-и иной информации. Однако сегодня средства мультимедиа имитируют реальность для многих целей вполне удовлетворительно.

Имитация реальности с помощью мультимедийных средств происходит в диалоговом режиме. Пользователь имеет возможность постоянного взаимодействия с программой. В любой момент можно запросить необходимую информацию, представить её в разнообразном удобном для себя виде, а также получить оценку от программы правильности действий пользователя.

Весьма модное направление развития мультимедийных технологий – виртуальная реальность. Виртуальная реальность – это получение почти реальных ощущений человеком от нереального мира. Моделирование такого нереального мира неплохо выполняется с помощью современного компьютера. Компьютерные средства создают настолько полные зрительные, звуковые и иные ощущения, что пользователь забывает о реальном окружающем мире и с увлечением погружается в вымышленный мир. Особый эффект присутствия достигается возможностями свободного перемещения в виртуальной реальности, а также возможностями воздействия на эту реальность.

В качестве недорогого варианта погружения в мультимедиа можно использовать очки с разными стёклами, обеспечивающими объёмное восприятие изображения. Например, объёмное монохроматичное изображение можно наблюдать с помощью очков, одно из стёкол которых красное, а другое - синее. Если при этом на экран выводятся две проекции изображения, одна красная, другая синяя, - то создаётся иллюзия объёмности. Однако такой способ не позволяет передать гамму цветов.

Дополнительные ощущения погружения в виртуальную реальность достигаются при использовании специальной информационной перчатки, которая позволяет «трогать» предметы виртуального мира. При этом для управления компьютером вместо обычной клавиатуры удобно пользоваться специальным пультом, рассчитанным на одну руку. Такая аппаратура позволяет, например, испытать забавные ощущения от того, что трогаешь рукой человека, который в реальном мире находится на большом удалении.

Мультимедиа технологии

Мультимедиа технологии -возможность представления информации пользователю во взаимодействии различных форм (текст, графика, анимация, звук, видео) в интерактивном режиме.

Технологию мультимедиа составляют специальные аппаратные и программные средства.

Мультимедиа-продукты можно разделить на несколько категорий в зависимости от того, на какие группы потребителей они ориентированны.

Несомненным достоинством и особенностью технологии являются следующие возможности мультимедиа, которые активно используются в представлении информации:

· возможность хранения большого объема самой разной информации на одном носителе (до 20 томов авторского текста, около 2000 и более высококачественных изображений, 30-45 минут видеозаписи, до 7 часов звука);

· возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим "лупа") при сохранении качества изображения. Это особенно важно для презентации произведений искусства и уникальных исторических документов;

· возможность сравнения изображения и обработки его разнообразными программными средствами с научно- исследовательскими или познавательными целями;

· возможность выделения в сопровождающем изображение текстовом или другом визуальном материале "горячих слов (областей)", по которым осуществляется немедленное получение справочной или любой другой пояснительной (в том числе визуальной) информации (технологии гипертекста и гипермедиа);

· возможность осуществления непрерывного музыкального или любого другого аудиосопровождения, соответствующего статичному или динамичному визуальному ряду;

· возможность использования видеофрагментов из фильмов, видеозаписей и т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи;

· возможность включения в содержание диска баз данных, методик обработки образов, анимации (к примеру, сопровождение рассказа о композиции картины графической анимационной демонстрацией геометрических построений ее композиции) и т.д.;

· возможность подключения к глобальной сети Internet;

· возможность работы с различными приложениями (текстовыми, графическими и звуковыми редакторами, картографической информацией);

· возможность создания собственных "галерей" (выборок) из представляемой в продукте информации (режим "карман" или "мои пометки");

· возможность "запоминания пройденного пути" и создания "закладок" на заинтересовавшей экранной "странице";

· возможность автоматического просмотра всего содержания продукта ("слайд-шоу") или создания анимированного и озвученного "путеводителя-гида" по продукту ("говорящей и показывающей инструкции пользователя"); включение в состав продукта игровых компонентов с информационными составляющими;

· возможность "свободной" навигации по информации и выхода в основное меню (укрупненное содержание), на полное оглавление или вовсе из программы в любой точке продукта.

Аппаратные средства создания проектов

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналогоцифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах.

Аппаратные средства мультимедиа:

· Средства звукозаписи;

· Звуковоспроизведении;

· Манипуляторы;

· Средства «виртуальной реальности»;

· Носители информации (CD-ROM);

· Средства передачи;

· Средства записи;

· Обработки изображения;

Звуковые карты

С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа призентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта.

Манипуляторы

Простым, удобным и популярным средством для управления компьютером является мышь. Если компьютер используется для игровых и тренажёрных задач, а также в некоторых случаях, то для управления перемещением объекта по экрану удобно пользоваться специальной ручкой, имеющей название джойстик – в буквальном переводе палочка радости.

Виртуальная реальность

· Очки виртуальной реальности.

На экран выводится изображение для одного глаза в тот момент, когда очки затемняют другой. И, поочередно показывая для каждого глаза свое изображение, очки создают иллюзию трехмерности изображения на экране.

· Виртуальные бинокли.

Эти приспособления уже не просто затемняют поочередно глаза, а сами выводят изображения для каждого глаза.

· VR-шлем (Head-Mounted-Display, HMD).

Принцип действая такой же, как и у биноклей: фиксирование изображения для каждого глаза.

· 3D панели.

Эти устройства можно сравнить с VR-очками, но с тем отличием, что они одеваются на монитор.

· 3D звук.

Все они позволяют воспроизводить настолько реалистичный звук, что его трудно отличить от настоящего.

· Vr - перчатки.

Отслеживать движения пальцев им помогает сложная система эластичных световодов и пара десятков датчиков. Как только палец начинает сгибаться, световод сужает просвет, а датчики улавливливают падение интенсивности света на каком-либо участке. Адекватно этим изменениям ведет себя кисть в виртуальном пространстве. Естественно, эта технология разработана больше для научных исследований, нежели для игр.

Есть и технология с механическими датчиками, но она тяжела и несовершенна.

· Датчики кисти.

Помимо перчаток существуют и другие устройства слежения за перемещениями кисти. В самые простые встроен только position tracker, отслеживающий перемещения небольшого кубика, который нужно держать в одной из рук.

· VR-костюм.

Самым полным набором оборудования для виртуальной реальности является виртуальный костюм. Он состоит из обтягивающего комбинезона со множеством магнитных сенсоров, которые отслеживают движения всех частей тела. К нему добавляется HMD, датчик(и) кисти (реже перчатка) и провода для присоединения всего этого к компьютеру. Тогда уж точно будет полный комплект ощущений.

Видеокарты

При смешении сигналов основные проблемы возникают с видео–изоб­ражением. В любом случае требуется синхронизация двух изображений. "Настольные видео–студии”, являющиеся одним из примеров применения систем мультимедиа, позволяют готовить совмещенные видео–компьютерные клипы, титры для видеофильмов, помогают при монтаже кинофильмов.

Оцифрованный кадр может затем быть изменен, отредактирован обычным графическим редактором, могут быть убраны или добавлены детали, изменены цвета, масштабы, добавлены спецэффекты, типа мозаики, инверсии и т.д. Естественно, интерактивная экранная обработка возможна лишь в пределах разрешения, обеспечиваемого данным конкретным видеоадаптером.

Программные средства создания проектов

Существует большое множество программных средств для разработки мультимедийных приложений. К сожалению, перечисление всех невозможно, остановимся только на наиболее распространенных программ. Их можно разделить на несколько категории:

· Средства создания и обработки изображения;

  • Средства создания и обработки анимации, 2D, 3D – графики;
  • Средства создания и обработки видеоизображения (видеомонтаж, 3D-титры);
  • Средства создания и обработки звука;
  • Средства создания презентации;

Мультимедийный компьютер

«Мультимедийный компьютер» – это такой компьютер, на котором мультимедийные приложения могут в полной мере реализовать все свои возможности. Мультимедийный компьютер должен уметь многое: отображать на экране монитора графическую и видео-информацию, анимацию, воспроизводить с высоким качеством различное звуковое сопровождение, музыку, в том числе и с музыкальных компакт-дисков, и многое другое…




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 734; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.053 сек.