Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геотермальная энергия. Расчет геотермальных энергетических установок. Использование тепловой энергии океанов




Практическое занятие № 6

Цель: ознакомиться с принципом работы ГеоТЭС и технологиями преобразования тепловой энергии океана (ПТЭО), а также с методикой их расчета.

Продолжительность занятия – 2 часа

Ход работы:

1. На основании теоретической части работы ознакомится с принципом работы ГеоТЭС и технологиями преобразования тепловой энергии океана (ПТЭО.

2. В соответствии с индивидуальным заданием решить практические задачи.

 

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

 

Использование тепловой энергии океана

Технология преобразования тепловой энергии океана (ПТЭО) позволяет создавать электричество за счет разницы температур между теплой и холодной океанской водой. Холодная вода перекачивается через трубу с глубины более 1000 метров (из места, куда солнечные лучи никогда не попадают). Система также использует и теплую воду из области, близкой к поверхности океана. Нагретая солнечными лучами вода проходит через теплообменник с химическими веществами с низкой температурой кипения, например аммиаком, что создает химический пар, приводящий в движение турбины электрогенераторов. Затем пар конденсируется обратно в жидкую форму при помощи охлажденной воды из глубин океана. Тропические регионы считаются наиболее удачным местом для размещения систем ПТЭО. Это обусловлено большей разностью температур между водой на мелководье и на глубине.

В отличие от ветровых и солнечных ферм, океаническая ТЭС может производить экологически чистую электроэнергию круглосуточно, 365 дней в году. Единственным побочным продуктом таких энергоблоков является холодная вода, которая может использоваться для охлаждения и кондиционирования воздуха в административных и жилых зданиях рядом с энергогенерирующим объектом.

 

Использование геотермальной энергии

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии.

По различным подсчетам, температура в центре Земли составляет, минимум, 6650 °C. Скорость остывания Земли примерно равна 300-350 °C в миллиард лет. Земля выделяет 42·1012 Вт тепла, из которых 2% поглощается в коре и 98% - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое выделяется слишком глубоко, но и 840000000000 Вт (2%) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Существует несколько способов получения энергии на ГеоТЭС:

· Прямая схема: пар направляется по трубам в турбины, соединённые с электрогенераторами;

· Непрямая схема: аналогична прямой схеме, но перед попаданием в трубы пар очищают от газов, вызывающих разрушение труб;

· Смешанная схема: аналогична прямой схеме, но после конденсации из воды удаляют не растворившиеся в ней газы.

 

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

 

Задача 1. Определить начальную температуру t2 и количество геотермальной энергии Еo (Дж) водоносного пласта толщиной h км при глубине залегания z км, если заданы характеристики породы пласта: плотность ргр = 2700 кг/ м3; пористость а = 5 %; удельная теплоемкость Сгр =840 Дж/(кг· К). Температурный градиент (dT/dz) в °С /км выбрать по таблице вариантов задания.

Среднюю температуру поверхности to принять равной 10 °С. Удельная теплоемкость воды Св = 4200 Дж/(кг · К); плотность воды ρ = 1·103 кг/м3. Расчет произвести по отношению к площади поверхности F = 1 км2. Минимально допустимую температуру пласта принять равной t1 =40 ° С.

Определить также постоянную времени извлечения тепловой энергии τo (лет) при закачивании воды в пласт и расходе ее V =0,1 м3/(с·км2). Какова будет тепловая мощность, извлекаемая первоначально (dE/dz)τ =0 и через 10 лет (dE/dz)τ =10?

Задача 1 посвящена тепловому потенциалу геотермальной энергии, сосредоточенной в естественных водоносных горизонтах на глубине z (км) от земной поверхности. Обычно толщина водоносного слоя h (км) меньше глубины его залегания. Слой имеет пористую структуру - скальные породы имеют поры, заполненные водой (пористость оценивается коэффициентом α). Средняя плотность твердых пород земной коры ргр =2700 кг/м3, а коэффициент теплопроводности λгр =2 Вт/(м·К). Изменение температуры грунта по направлению к земной поверхности характеризуется температурным градиентом (dT/dz), измеряемым в °С/км или К/км.

Наиболее распространены на земном шаре районы с нормальным температурным градиентом (менее 40 °С/км) с плотностью исходящих в направлении поверхности тепловых потоков ≈ 0,06 Вт/м2. Экономическая целесообразность извлечения тепла из недр Земли здесь маловероятна.

В полутермальных районах температурный градиент равен 40-80 °С/км. Здесь целесообразно использовать тепло недр для отопления, в теплицах, в бальнеологии.

В гипертермальных районах (вблизи границ платформ земной коры) градиент более 80 °С/км. Здесь целесообразно строить ГеоТЭС.

При известном температурном градиенте можно определить температуру водоносного пласта перед началом его эксплуатации:

 

Tг=To+(dT/dz)·z,

 

где Тo - температура на поверхности Земли, К (° С).

 

В расчетной практике характеристики геотермальной энергетики обычно относят к 1 км 2 поверхности F.

Теплоемкость пласта Спл (Дж/К) можно определить по уравнению

Cпл=[α·ρв·Cв+(1- α)·ρгр·Cгр]·h·F,

где рв и Св- соответственно плотность и изобарная удельная теплоемкость

воды;

ргр и Сгр - плотность и удельная теплоемкость грунта (пород пласта); обычно ргр =820-850 Дж/(кг·К).

 

Если задать минимально допустимую температуру, при которой можно использовать тепловую энергию пласта Т1 (К), то можно оценить его тепловой потенциал к началу эксплуатации (Дж):

E0=Cпл·(T2-T1)

Постоянную времени пласта τ0 (возможное время его использования, лет) в случае отвода тепловой энергии путем закачки в него воды с объемным расходом V (м3/с) можно определить по уравнению:

τ0=Cпл/(V·ρв·Св)

Считают, что тепловой потенциал пласта во время его разработки изменяется по экспоненциальному закону:

E=E0·e -(τ/τo)

где τ - число лет с начала эксплуатации;

е - основание натуральных логарифмов.

Тепловая мощность геотермального пласта в момент времени τ (лет с начала разработки) в Вт (МВт):

 

Величины и единицы их измерения Варианты заданий
                   
h, км 0,6 0,7 0,8 0,9 1,0 0,9 0,8 0,7 0,6 0,5
z, км 2,5 3,0 3,5 4,0 3,5 3,0 2,5   3,5  
(dT/dz), °C/км                    

 

 

Задача 2 Считается, что действительный КПД η океанической ТЭС, использующей температурный перепад поверхностных и глубинных вод (T1-T2)= ∆T и работающей по циклу Ренкина, вдвое меньше термического КПД установки, работающей по циклу Карно, ηtk. Оценить возможную величину действительного КПД ОТЭС, рабочим телом которой является аммиак, если температура воды на поверхности океана t, °С, а температура воды на глубине океана t2, °С. Какой расход теплой воды V, m/ч потребуется для ОТЭС мощностью N МВт?

Считать, что плотность воды ρ = 1·103 кг/м3, а удельная массовая теплоемкость Сp = 4,2·103 Дж/(кг-К).

 

Задача 2 посвящена перспективам использования перепада температур поверхностных и глубинных вод океана для получения электроэнергии на ОТЭС, работающей по известному циклу Ренкина. В качестве рабочего тела предполагается использование легкокипящих веществ (аммиак, фреон). Вследствие небольших перепадов температур (∆T=15÷26 oC) термический КПД установки, работающей по циклу Карно, составляет всего 5-9 %. Реальный КПД установки, работающей по циклу Ренкина, будет вдвое меньше. В результате для получения доли относительно небольших мощностей на ОТЭС требуются большие расходы "теплой" и "холодной" воды и, следовательно, огромные диаметры подводящих и отводящих трубопроводов.

Если считать теплообменники (испаритель и конденсатор) идеальными, то тепловую мощность, полученную от теплой воды Qo (Вт) можно представить как

Q0=p·V·Cp·∆T,

где р - плотность морской воды, кг/м3;

Ср - массовая теплоемкость морской воды, Дж/(кг · К);

V - объемный расход воды, м3/с;

∆T = T1-T2 - разность температур поверхностных и глубинных вод

(температурный перепад цикла) в °С или К.

В идеальном теоретическом цикле Карно механическая мощность N0 (Вт) может быть определена как

N0tk·Qo,

или с учетом (1) и выражения для термического КПД цикла Карно ηtk:

N0=p·Cp·V·(∆T)2/T1.

 

Величины и единицы их измерения Варианты заданий
                   
N,МВт                    
t1, o C                    
t2,° C                    

Задача 3 Двухконтурная пароводяная геотермальная электростанция с электрической мощностью N получает теплоту от воды из геотермальных скважин с температурой tгс. Сухой насыщенный пар на выходе из парогенератора имеет температуру на 200С ниже, чем tгс. Пар расширяется в турбине и поступает в конденсатор, где охлаждается водой из окружающей среды с температурой tхв. Охлаждающая вода нагревается в конденсаторе на 120С. Конденсат имеет температуру на 200С выше, чем tхв. Геотермальная вода выходит из парогенерирующей установки с температурой на 15 0С выше, чем конденсат. Относительный внутренний коэффициент турбины ηоі, электрический КПД турбогенератора ηэ =0,96. Определить термический КПД цикла Ренкина, расход пара и удельный расход теплоты, расходы воды из геотермальных скважин и из окружающей среды.

 

В одноконтурной паротурбинной ГеоТЭУ энтальпия сухого насыщенного пара после сепарации определяется по температуре геотермальной воды tгв. Из таблиц термодинамических свойств воды и водяного пара или h-s диаграммы. В случае двухконтурной ГеоТЭУ учитывается перепад температур в парогенераторе Δt. В остальном расчет ведется как и для солнечной паротурбинной ТЭС.

Расход пара определяется из соотношения

кг/с,

 

где ηt – термический КПД цикла,

ηоі – Относительный внутренний КПД турбины,

ηэ –электрический КПД турбогенератора,

N – мощность ГеоТЭУ, кВт,

Расход горячей воды из геотермальных скважин определяется из формулы

, кг/с,

 

расход холодной воды из окружающей среды на конденсацию пара

 

, кг/с,

где с = 4,19 кДж/кг∙К – теплоемкость воды,

ηпг – КПД парогенератора,

Δtпг – перепад температур геотермальной воды в парогенераторе, 0С,

Δtхв – перепад температур холодной воды в конденсаторе, 0С.

Расчет ГеоТЭУ с низкокипящими и смесевыми рабочими телами производится с использованием таблиц термодинамических свойств и h-s диаграмм паров этих жидкостей.

 

 

Величины и единицы их измерения Варианты заданий
                   
N, МВт                    
tхв., 0С                    
tхв., 0С                    
ηoi, %                    

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 6028; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.