Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Магнитомягкие материалы для работы в слабых полях




Железо

Материалы для работы в постоянных и низкочастотных полях

Промышленные магнитомягкие материалы

Основные классы магнитных материалов.

 

Все магнитные материалы принято условно разделять на магнитомягкие и магнитотвердые.

Магнитомягкими называют материалы легко перемагничивающиеся под действием внешнего магнитного поля. Для таких материалов характерны низкие значения коэрцитивной силы и высокие значения магнитной проницаемости. Их используют для концентрации магнитного поля. В большинстве случаев магнитомягкие материалы работают в переменных магнитных полях, поэтому для них важно высокое удельное электрическое сопротивление. Исторически первым магнитомягким материалом было малоуглеродистое железо, обладающее низкой механической твердостью. Поэтому такие материалы получили название магнитомягких.

Магнитотвердыми называют материалы с высокой коэрцитивной силой и большой остаточной индукцией. Их применяют для изготовления постоянных магнитов - источников постоянного магнитного поля. Исторически первыми магнитотвердыми материалами были механически твердые, закаленные углеродистые стали. Поэтому, такие материала получили название магнитотвердых.

 

 

 

Для работы в качестве магнитопроводов в постоянных и низкочастотных полях наиболее подходящими являются железо и его сплавы с кремнием. Поскольку у железа для заполнения 3d орбитали не хватает 4 электронов, атомы железа обладают большим магнитным моментом. В связи с этим, у железа высокая индукция насыщения (2,2 Тл). Следует отметить, что наиболее часто встречающиеся примеси - углерод, кислород, сера и фосфор - плохо растворяются в железе при невысоких температурах и выделяются в виде карбидов, оксидов, сульфидов и фосфидов. Эти включения затрудняют перемещение границ доменов и, тем самым снижают магнитную проницаемость и увеличивают коэрцитивную силу.

Наиболее дешевым материалом является технически чистое железо с суммарным содержанием примесей до 0,1%. Благодаря сравнительно низкому удельному электрическому сопротивлению (»0,1 мкОм м) технически чистое железо используется в основном для магнитопроводов постоянного магнитного потока. Существенным недостатком технически чистого железа является его старение, то есть повышение коэрцитивной силы со временем за счет выделения тонко дисперсных частиц карбидов и нитридов. Для уменьшения вредного влияния старения химические соединения выделяют заранее в виде сравнительно крупных частиц. Для этого материал подвергают отжигу при 910 – 950 °С и медленному охлаждению.

Очистка железа от примесей приводит к росту магнитной проницаемости и снижению коэрцитивной силы. Эти преимущества особенно ярко проявляются в слабых полях, то есть в полях используемых в радиоэлектронике и измерительных устройствах. Очистка железа производится электролизом, восстановлением в водороде химически чистых окислов железа и термическим разложением пентакарбонила железа (Fe(CO)5). Соответственно различают электролитическое, восстановленное и карбонильное железо. Поскольку очистка существенно увеличивает стоимость материала, его применение крайне ограничено. Наибольшее применение получило карбонильное железо. Это связано с тем, что при разложении пентакарбонила железа получается металлический порошок. Смешав этот порошок с каким-либо лаком можно получить материал, сочетающий высокое удельное электрическое сопротивление с высокой магнитной проницаемостью.

Электротехническая сталь

Низкое электрическое сопротивление железа приводит к тому, что в переменных полях в железе возникают большие потери на вихревые токи и снижается магнитная проницаемость. При легировании железа кремнием удельное электрическое сопротивление существенно возрастает. Так у сплава, содержащего 5% кремния, удельное электрическое сопротивление достигает 0,7 мкОм м, то есть увеличивается более чем в 7 раз по сравнению с чистым железом.

Кроме того, присутствие кремния в железе снижает магнитную анизотропию и магнитострикцию. При увеличении отношения a/r снижается разница в значениях обменного интеграла по различным направлениям, а следовательно, уменьшается магнитная анизотропия. У сплава содержащего 6,8% Si магнитная анизотропия в 3 раза меньше чем у чистого железа, а магнитострикция практически равна нулю. Наконец при добавке к железу кремния нейтрализуется вредное влияние примесей кислорода и углерода. Последнее обстоятельство связано с тем, что кремний раскисляет сталь и способствует переходу углерода из карбида железа (цементита) в графит в соответствии с уравнениями:

FeO + Si = Fe + SiO2 (3.4)

Fe3C + Si = (Fe,Si) + Г (3.5)

Важно отметить, что взаимодействие кремния с дислокациями приводит к снижении подвижности последних, поэтому снижается пластичность сплавов. В связи с этим промышленные сплавы железа с кремнием - электротехнические стали содержат не более 5% Si.

Поскольку у электротехнических сталей сохраняется магнитная анизотропия, то для улучшения магнитных свойств применяют текстурованную сталь, то есть сталь, у которой некоторые кристаллографические направления в соседних зернах совпадают. Для получения стали с высокой магнитной проницаемостью и малыми потерями необходимо совпадение направлений типа [111]. Для того чтобы получить магнитную текстуру применяют холодную прокатку с большими обжатиями и последующий отжиг при температуре 900-1000оС. В ходе холодной деформации происходит ориентация зерен, а при отжиге идет рекристаллизация, приводящая к снижению плотности дислокаций и росту зерен. Текстурованную сталь называют также холоднокатаной. Холоднокатаная сталь в 1,5 раза дороже горячекатаной, но потери в ней вдвое ниже. Важно иметь в виду, что для эффективного использования текстурованной электротехнической стали магнитный поток должен проходить вдоль направления легкого намагничивания.

 

Для материалов, работающих в слабых полях, чрезвычайное значение имеет высокое значение начальной магнитной проницаемости. Иначе говоря, для таких материалов важна большая подвижность границ доменов в условиях малой напряженности внешнего магнитного поля. Следовательно, такие материалы должны быть однофазными и иметь малую магнитную анизотропию и магнитострикцию.

Как отмечалось ранее, увеличение межатомных расстояний между атомами переходных металлов вследствие легирования, приводит к снижению магнитной анизотропии. Поэтому для достижения максимальной магнитной проницаемости используют сильно легированные сплавы. Примером могут служить альсифер и пермаллои.

Альсифер - сплав системы Fe-Si-Al, содержащий около 9,5% кремния и 5,5% алюминия. При этом составе магнитная анизотропия минимальна и сплав имеет очень высокую магнитную проницаемость. Отклонение от оптимального состава приводит к снижению магнитной проницаемости (рис.50). (Объясните почему?)

Сплав отличается достаточно высоким удельный электрическим сопротивлением (r=0,81 мкОм´м), что снижает потери на вихревые токи. Вместе с тем, сплав непластичен и тверд. Детали из него изготавливают методом порошковой металлургии, а окончательная обработка деталей возможна только анодно-механическим и электроискровым способами, а также шлифовкой. Трудность обработки повышает стоимость изделий, однако, поскольку сплав не содержит дорогостоящих компонентов его широко применяют для изготовления магнитных экранов и магнитопроводов.

Пермаллои. Пермаллоями называют сплав железа и никеля. При этом различают низконикелевые пермаллои и высоконикелевые пермаллои. Низконикелевые пермаллои содержат 45-65% Ni, высоконикелевые пермаллои - 76-80% Ni. Для низконикелевых пермаллоев характерны более высокое удельной электросопротивление и повышенная индукция насыщения, однако, магнитная проницаемость низконикелевых пермаллоев ниже магнитной проницаемости высоконикелевых пермаллоев. Важно отметить, что индукция насыщения высоконикелевых пермаллоев ниже индукции насыщения низконикелевых пермаллоев. Это обстоятельство связано с тем, что магнитный момент иона никеля ниже магнитного момента иона железа.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 802; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.