Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Образец решения контрольной работы № 2




Задание 1. Найти пределы функций.

1)

2) ; 3) .

Решение. 1) Данный предел в зависимости от значений вычисляется разными способами.

а) . Найдем значения функций, стоящих в числителе и в знаменателе дроби, в точке : . Так как полученные значения конечны и отличны от нуля, то по теореме о пределе частного, учитывая непрерывность функций, предел равен значению частного в предельной точке: ;

б) . Найдем новые значения и в точке : . Так как числитель и знаменатель дроби оба равны нулю, то заданное отношение в точке является неопределенностью вида и применять теорему о пределе частного нельзя. Для нахождения предела в этом случае выделим в числителе и знаменателе критический множитель , создающий неопределенность вида при . С этой целью найдем корни уравнений и , затем разложим квадратные трехчлены на линейные множители и после сокращения дроби на общий критический множитель найдем предел оставшегося выражения, применяя теорему о пределе частного как в случае пункта а):

;

в) . При имеем и , т. е. заданное отношение при является неопределенностью вида и теорему о пределе частного применять нельзя. Для нахождения в этом случае предела дроби опять выделим в числителе и знаменателе критический множитель, который представляет собой старшую степень переменной . В данном случае это есть . После сокращения дроби на критический множитель применим теорему о пределе частного и следующие равенства, известные из теории пределов: , , .

Получим:

.

2) Найдем значения функций и , стоящих в числителе и знаменателе дроби, в точке : , . Следовательно, заданное отношение при является неопределенностью вида . Для нахождения предела отношения выделим в числителе и в знаменателе критический множитель , создающий неопределенность, и сократим на него дробь. С этой целью умножим числитель и знаменатель на выражение сопряженное знаменателю и используем формулу сокращенного умножения разности квадратов: :

.

По теореме о пределе корня , получим:

.

3) . Найдем значения функций и в точке : и . Следовательно, заданное отношение представляет собой при неопределенность вида . Вычислим этот предел, применяя формулу первого замечательного предела: и равенство , вытекающее из непрерывности в точке функции . С этой целью преобразуем заданный предел следующим образом:

.

Ответ: 1), а) ; б) ; в) . 2) . 3) 3.

Задание 2. Найти производные заданных функций.

1) ; 2) ;

3) .

Решение. 1) .

Используем правило дифференцирование суммы и правила дифференцирования сложной функции вида , где , а также таблицу производных. Получим:

.

2) .

Используем правило дифференцирование суммы и правила дифференцирования сложных функций вида

,

где , а также таблицу производных. Получим:

.

3) .

Используем правило дифференцирования суммы , правило дифференцирования произведения и правила дифференцирования сложных функций вида

,

где , а также таблицу производных. Получим:

.

Ответ: 1) ; 2) ; 3) .

Задание 3. Провести полное исследование функции и построить ее график.

Решение. 1) Найдем область определения, интервалы непрерывности и точки разрыва функции.

Функция определена на всей числовой оси, кроме точки , т. е. . В каждой точке области определения функция непрерывна. Точка есть точка разрыва функции, т. к. знаменатель функции в этой точке равен нулю, а числитель отличен от нуля.

2) Выясним четность, нечетность и периодичность функции.

, т. е. . Следовательно, функция не является ни четной, ни нечетной.

Функция непериодична, т. к. , где Т – некоторое действительное число.

3) Найдем асимптоты графика функции (вертикальные, горизонтальные и наклонные).

а) Вертикальные асимптоты.

Так как точка оси Ox есть точка разрыва функции, то прямая линия , перпендикулярная оси Ox, есть вертикальная асимптота графика. Исследуем поведение графика функции вблизи вертикальной асимптоты по односторонним пределам функции. Возьмем слева от точки близкое значение, например, и вычислим в нем значение функции и ее знак:

.

Так как это значение отрицательно, и функция слева от точки непрерывна, то она сохраняет знак и .

Теперь возьмем справа от точки близкое значение, например, :

.

Так как это значение положительно, и функция справа от точки непрерывна, то при переходе к пределу функция сохраняет знак и .

Таким образом, слева от точки функция отрицательна, а справа от точки – положительна и имеет односторонние пределы, равные бесконечности. Такая точка называется точкой разрыва второго рода (или точкой бесконечного разрыва функции).

б) Горизонтальные асимптоты.

Для нахождения горизонтальной асимптоты нужно найти предел функции при , раскрывая неопределенность вида . Если существует конечный предел , то прямая, определяемая уравнением , есть горизонтальная асимптота графика. Если же этот предел равен бесконечности, то горизонтальной асимптоты нет. Найдем предел:

.

Предел равен бесконечности, значит горизонтальной асимптоты нет.

в) Наклонные асимптоты.

Наклонная асимптота имеет уравнение прямой линии с угловым коэффициентом вида , где , . Если , то наклонной асимптоты не существует.

Найдем оба указанных предела для заданной функции:

,

.

Таким образом, график имеет наклонную асимптоту .

4) Найдем интервалы возрастания и убывания функции, точки экстремума и экстремумы функции.

Находим сначала первую производную функции:

.

Так как точка , в которой не существует, не принадлежит области определения функции, то критическими точками первого рода являются лишь точки, в которых или , т. е. .

Критические точки и точка разрыва разбивают ось Ox на 4 интервала монотонности функции. По знаку производной в этих интервалах определяем интервалы возрастания и убывания функции, точки экстремума и экстремумы функции. Полученные данные заносим в табл. 1.

Таблица 1.

 
+   не сущ.   +
ä –8 max æ не сущ. æ min ä

 

5) Найдем интервалы выпуклости и вогнутости графика функции, точки перегиба.

Находим сначала вторую производную функции:

.

Так как точка не принадлежит области определения функции и , то критических точек второго рода нет.

Точка разрыва разбивают числовую ось Ox на 2 интервала, в которых по знаку второй производной определяем интервалы выпуклости и вогнутости графика. Полученные данные заносим в табл. 2.

Таблица 2.

не сущ. +
Ç выпуклый не сущ. È вогнутый

 

6) Находим точки пересечения графика функции с осями координат, решая две системы уравнений.

С осью Ox:

А (1; 0) – точка пересечения графика с осью Ox.

С осью Oy:

В (0; 1) – точка пересечения графика с осью .

7) Используя результаты исследования, строим график функции в такой последовательности: а) рисуем вертикальную асимптоту и наклонную асимптоту , подписываем их; б) изображаем максимум функции в точке и минимум в точке ; в) наносим на осях точки А (1; 0) и В (0; 1) пересечения графика с осями координат; г) нанесенные на плоскость точки соединяем гладкими линиями с учетом табл. 1 и 2 и поведения функции вблизи асимптот.

 
 

 


Задание 4. Доказать, что функция удовлетворяет уравнению .

Решение. По определению частной производной находим , считая переменную y фиксированной постоянной величиной:

Аналогично находим частную производную считая переменную x фиксированной постоянной величиной:

Находим смешанную частную производную 2-го порядка, используя правило дифференцирования произведения двух функций:

Подставляем найденные частные производные в данное уравнение:

.

Ответ: что и требовалось доказать.

 

3.1. Контрольная работа № 3. «Интегральное исчисление».

1. Найти неопределенные интегралы. Результаты проверить дифференцированием.

1. 1) ; 2) ;

3) ; 4) .

2. 1) ; 2) ;

3) ; 4) .

3. 1) ; 2) ;

3) ; 4) .

4. 1) ; 2) ;

3) ; 4) .

5. 1) ; 2) ;

3) ; 4) .

6. 1) ; 2) ;

3) ; 4) .

7. 1) ; 2) ;

3) ; 4) .

8. 1) ; 2) ;

3) ; 4) .

9. 1) ; 2) ;

3) ; 4) .

10. 1) ; 2) ;

3) ; 4) .

2. Вычислить по формуле Ньютона-Лейбница определенный интеграл.

1. . 2. . 3. .

4. . 5. . 6. .

7. . 8. . 9. .

10. .

3. Вычислить площадь фигуры, ограниченной графиками функций. Сделать чертеж.

1. , . 2. , .

3. , . 4. , .

5. , . 6. , .

7. , . 8. , .

9. , . 10. , .

4. Вычислить объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной графиками функций.

1. , , . 2. , , .

3. , , . 4. , , .

5. , , . 6. , , .

7. , , . 8. , , .

9. , , . 10. , , .




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 454; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.