Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференциальные уравнения




Основные теоретические сведения.

1. Равенство вида , содержащее независимую переменную x, искомую функцию y = y (x) и ее производные какого-либо порядка, называется дифференциальным уравнением.

2. Натуральное число n, являющееся порядком старшей производной, называется порядком дифференциального уравнения.

3. Дифференциальным уравнением 1-го порядка называется уравнение вида или в дифференциалах . Если эти равенства можно разрешить относительно производной, то их записывают в виде или .

4. Решением дифференциального уравнения 1-го порядка называется функция y = j(x), имеющая непрерывную производную на некотором интервале (a; b) и обращающая уравнение в верное числовое равенство.

5. Задача Коши для дифференциального уравнения 1-го порядка: требуется найти решение y = j(x) уравнения, удовлетворяющее начальному условию y = y 0 при x = x 0.

6. Общим решением дифференциального уравнения 1-го порядка называется функция y = j(x; С), содержащая произвольную постоянную С и удовлетворяющая условиям: 1) при любых начальных условиях (x 0; y 0) уравнение y 0 = j(x 0; С) должно быть разрешимо относительно С так, что С = y(x 0; y 0); 2) при всех значениях постоянной С = y(x 0; y 0) функция y = j(x; y(x 0; y 0)) должна удовлетворять дифференциальному уравнению.

7. Всякое решение, получаемое из общего при фиксированном значении постоянной С называется частным решением дифференциального уравнения.

8. Уравнение вида или называется дифференциальным уравнением с разделяющимися переменными. Приводятся к виду или путем разделения переменных x и y и затем почленно интегрируются.

9. Уравнение вида называется однородным дифференциальным уравнением. Используется замена: или , где – новая неизвестная функция, тогда . Сводится к дифференциальному уравнению с разделяющимися переменными относительно новой функции, для которого находят общее решение. Записывают общее решение исходного уравнения по формуле .

10. Уравнение вида называется линейным дифференциальным уравнением. Используется метод Бернулли: , где , – новые неизвестные функции, тогда . Получаем: или . Подберем функцию v так, чтобы выражение в скобках было равно нулю, тогда получаем Первое уравнение – ДУ с разделяющимися переменными, находим его частное решение при С = 0. Найденное частное решение подставляем во второе уравнение, являющееся тоже ДУ с разделяющимися переменными и находим его общее решение. Записываем общее решение исходного уравнения по формуле .

11. Уравнение вида , где называется дифференциальным уравнением Бернулли. Используется метод Бернулли: .

12. Дифференциальным уравнением 2-го порядка называется уравнение вида . Если уравнение можно разрешить относительно , то его записывают в виде .

13. Решением дифференциального уравнения 2-го порядка называется функция y = j(x), имеющая непрерывные производные , на некотором интервале (a; b) и обращающая уравнение в верное числовое равенство.

14. Задача Коши для дифференциального уравнения 2-го порядка: требуется найти решение y = j(x) уравнения, удовлетворяющее начальным условиям y = y 0, при x = x 0.

15. Общим решением дифференциального уравнения 2-го порядка называется функция y = j(x; С 1; С 2), содержащая две произвольные постоянные С 1, С 2 и удовлетворяющая условиям: 1) при любых начальных условиях система уравнений должна быть разрешима относительно постоянных С 1, С 2 так, что 2) при всех значениях этих постоянных С 1, С 2 функция y = j(x; C 1; C 2) обращает дифференциальное уравнение в верное числовое равенство.

16. Всякое решение, получаемое из общего при фиксированных значениях постоянных С 1, С 2 называется частным решением дифференциального уравнения.

17. Дифференциальные уравнения 2-го порядка, допускающие понижение порядка:

а) решается повторным интегрированием.

б) , явно не содержащее искомой функции . Используется замена: , где – новая неизвестная функция, тогда . Для нового уравнения относительно функции p находим общее решение и подставляем его в формулу . Получаем ДУ с разделяющимися переменными относительно функции y, находим его общее решение.

в) , явно не содержащее независимой переменной . Замена: , где , тогда . Для нового уравнения относительно функции p находим общее решение и подставляем его в формулу . Получаем ДУ с разделяющимися переменными относительно функции y, находим его общее решение.

18. Линейным однородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами называется уравнение вида . Составляется характеристическое уравнение .

Если , то и общее решение исходного уравнения имеет вид: .

Если , то и .

Если , то и .

19. Линейным неоднородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами с правой частью специального вида называется уравнение вида . Его общее решение ищется в виде , где – общее решение соответствующего линейного однородного дифференциального уравнения 2-го порядка с постоянными коэффициентами: , а – какое-либо частное решение исходного уравнения.

Если , где a – некоторое число, Pn (x) – многочлен степени n, то , где – многочлен степени с неопределенными коэффициентами, – число, равное кратности a как корня характеристического уравнения соответствующего линейного однородного дифференциального уравнения 2-го порядка с постоянными коэффициентами .

Если , где a, b – некоторые числа, Pn (x), Qm (x) – многочлены степени n и m соответственно, то , где – многочлены степени с неопределенными коэффициентами, , – число, равное кратности как корня характеристического уравнения соответствующего линейного однородного дифференциального уравнения 2-го порядка с постоянными коэффициентами .




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 462; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.