Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Краткая теория. Определение активности радиоактивного препарата и коэффициента поглощения β - лучей в веществе




Лабораторная работа № 16

Определение активности радиоактивного препарата и коэффициента поглощения β - лучей в веществе

Основные понятия и определения: явление радиоактивности (естественная и искусственная радиоактивность); активность радиоактивного распада; взаимодействие ионизирующего излучения с веществом; дозиметрические приборы.

Цель работы: пользоваться пересчетным устройством, определять активность радиоактивного препарата и коэффициент поглощения излучения веществом.

По современным представлениям, атомное ядро состоит из элементарных частиц: протонов и нейтронов, которые называются нуклонами. Протоны и нейтроны прочно удерживаются внутри ядра ядерными силами, природа которых изучена еще недостаточно.

Протон имеет положительный заряд, равный заряду электрона (е=1,6∙10-19Кл), а нейтрон не имеет заряда. Протон принято обозначать символом – 1р1, а нейтрон – 0n1. Нижние символы обозначают заряд частицы, а верхние – массовое число частиц выраженное в атомных единицах массы (а.е.м.).

Число протонов Np в атомном ядре элемента определяется порядковым номером элемента Z, т.е. Np=Z.

Число нейтронов Nn в атомном ядре элемента равно разности между массовым числом А и атомным номера элемента: Nn=A–Z, где A выражается в а.е.м.

Атомные ядра химических элементов принято обозначать символом ZXA, где Х – символ элемента, А – массовое число, Z – атомный номер. Например, 19К39 – атомное ядро кислорода. Число протонов в ядре кислорода равно 19, а число нейтронов – 39-19=20.

Для того чтобы разрушить ядро, т.е. удалить нуклоны из поля действия сил, надо совершить работу (затратить некоторую энергию). Эта энергия называется энергией связи ядра (Eсв) и определяется на основе пропорциональности массы и энергии.

В процессе распада ядра наблюдается радиоактивное излучение трёх видов: α - лучи, β - лучи, γ - лучи.

α -лучи представляют собой поток ядер гелия 2Не 4, называемых α -частицами. Каждая α -частица несет два элементарных положительных заряда (+ 2е) и обладает массовым числом А =4. Они вылетают из ядер со скоростью 14000-20000 км/с, что соответствует энергии от 4 до 9 МЭВ. α - частица возникает по следующей реакции:

 

21p1+20n1 2Не4

 

Схему α -распада с учетом правила смещения (законы сохранения заряда, массового числа и энергии) записывают в виде:

ZXAZ-2YA-4+2α4,

 

где X и Y – символы соответственно материнского и дочернего ядра.

Проникая через вещество, α - частица ионизирует его атомы, действуя на них своим электрическим полем. Израсходовав энергию, она захватывает два электрона и превращается в атом гелия. В связи с тем, что α – частица является довольно тяжелой и большой по размеру микромира, она очень быстро растрачивает свою энергию при взаимодействии с веществом. Следовательно, - частица сильно поглощается веществом и для их экранировки достаточно, например, слой алюминия толщиной 0,06 мм или слой биологической ткани толщиной 0,12 мм.

β -лучи представляют собой поток быстрых электронов или позитронов (называемых β - частицами).

β -частицы рождаются в результате превращения одного из нейтронов ядра в протон или протона в нейтрон по следующей реакции:

;

 

где: -1β0 электрон; +1β 0 - позитрон; и - нейтроно и антинейтроно - элементарные частицы.

Схема -1β0 – распада (электронного) с учетом правила смещения:

ZXAZ+1YA+-1β0 + .

При -1β 0-распаде электрон образуется в результате внутриядерного превращения нейтрона в протон.

Схема +1β0 – распада (позитронного) с учетом правила смещения:

ZXAZ-1YA++1β0 + .

При +1β 0-распаде позитрон образуется вследствие внутриядерного превращения протона в нейтрон.

Поскольку b - частица имеет весьма малую массу, большую (в среднем) скорость и несет только один элементарный заряд ее ионизационная способность значительно (в среднем в 100 раз) меньше, а длина пробега во столько же раз больше, чем у a - частиц.

Во многих случаях при радиоактивном распаде ядро нового элемента оказывается в возбужденном состоянии, т.е. на более высоком энергетическом уровне. Такое состояние ядра неустойчиво, оно переходит в основное состояние. С излучением γ – фотона энергия g - фотонов у различных веществ может быть в пределах от 0,2 до 3 МЭВ.

g - лучи, в отличие от a и b - лучей, обладают малой ионизационной, но громадной проникающей способностью.

Радиоактивный распад приводит к постепенному уменьшению числа ядер радиоактивного элемента. Он носит случайный характер в том смысле, что нельзя предсказать, когда и какое именно ядро распадется. Можно говорить только о вероятности распада каждого ядра за определенный промежуток времени.

Число ядер dN, распадающихся за время dt, пропорционально времени и общему числу N ядер радиоактивного элемента:

 

(1)

 

l - коэффициент пропорциональности, называемый постоянной распада данного элемента.

Знак «-» указывает на уменьшение числа ядер радиоактивного элемента со времени. Для подсчета количества оставшихся N ядер радиоактивного элемента через t, проинтегрируем выражение (1). Для этого разделяем переменные:

.

От левой и правой частей берем интеграл:

 

 

Используем начальные условия, что в момент времени t=0 число ядер равно N0, а в любой момент времени t число ядер – N. С учетом этого получаем:

 

или

 

Полученное выражение запишем в виде:

 

или

 

Потенцируем полученное выражение и получаем:

 

(2)

 

Выражение (2) называется законом радиоактивного распада. Графически он представлен на рис. 1. Скорость распада различных радиоактивных элементов характеризуют периодом полураспада Т — время, в течение которого распадается половина исходного количества радиоактивных ядер; т.е. при t=T число ядер N=N0/2, где N0 – начальное число радиоактивных ядер.

 

- период полураспада.

 

Рисунок 1. График закона радиоактивного распада

 

Число ядерных распадов, совершающихся в радиоактивном элементе за 1с называется активностью этого элемента - а:

 

,

 

т.е. активность элементов пропорциональна его количеству и обратно пропорциональна периоду полураспада. За единицу активности принята активность 1 г радия, получившая название Кюри:

1 Ки=3,7·1010 распадов/с

Применяется еще одна единица активности - резерфорд.

1 Р=10 6 распадов /с=1/3700Ки

Активность радиоактивного препарата можно определить по активности эталонного препарата.

Если эталонный препарат с известной активностью аэт. дает Nэт импульсов за t, то, посчитав количество импульсов N x исследуемого препарата за то же время, определяют его активность по формуле:

а с учетом естественного фона имеем:

(3)

Для оценки защитных свойств какого-либо вещества от радиоактивного излучения необходимо знать, каково поглощение излучения в данном веществе.

Обозначим поглощающую величину слоя через dX. Относительное уменьшение интенсивности излучения dJ/J пропорционально толщине слоя dX:

 

(4)

 

где m - коэффициент пропорциональности, численно равный относительному уменьшению интенсивности излучения, на единицу пути в данном веществе и называется коэффициентом поглощения. Проинтегрировав выражение (4) получим закон поглощения для β и γ - лучей в веществе:

 

(5)

 

где: J0 - интенсивность излучения без поглощения среды;

J - интенсивность после поглощения средой толщиной X.

Интенсивность излучения β и γ - лучей до и после поглощения, I пропорциональна N числу импульсов, зарегистрированных прибором за время t. Тогда из формулы (5) имеем:

, откуда (6)

 

где N 0 и N1 — соответственно количество импульсов до и после поглощения в слое толщиной X 1. Такое же соотношение можно написать и для поглощающего слоя толщиной Х2.

 

(7)

 

Решая уравнения (6) и (7) относительно μ получим:

т.к. , то это выражение (с учетом естественного фона) даст нам окончательное формулу для подсчета коэффициента поглощения β и γ - лучей:

 

(8)




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 987; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.