Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частотные характеристики звеньев




Частотные характеристики определяют динамические свойства звеньев при воздействии на них гармонических сигналов. формально частотные характеристики получаются из передаточной функции W (s) при , где
– угловая частота, имеющая размерность [рад/с]. Сделав такую замену, получим

(2.13)

т.е. частотная передаточная функция есть прямое преобразование Фурье от весовой функции w (t).

Комплекснозначную функцию частоты будем называть амплитудно-фазовой частотной xаpактepистикой (АФЧХ) звена.

Как любое комплексное число АФЧХ можно представить в виде

, (2.14)

где

, (2.15)

. (2.16)

Если передаточная функция звена представлена в виде , то . При этом, очевидно, (считаем ) и .

В соответствии с (2.14)–(2.16) имеем еще ряд частотных характеристик: амплитудно-частотная xаpактepистика (АЧХ); фазово-частотная xаpактepистика (ФЧХ); , – соответственно вeществeнная и мнимая частотные характеристики.

Рассмотрим физический смысл частотных характеристик. Если на вход звена с передаточной функцией W (s) поступает гармонический сигнал , то в установившемся режиме после затухания переходной составляющей выходной сигнал будет также гармоническим: , т.е. той же частоты, но измененных амплитуды и фазы.

Изменение амплитуды определяется модулем , а фазы – аргументом на соответствующей частоте .

На практике для наглядности частотные характеристики изображают в виде графиков при изменении частоты от 0 до .

Частотные характеристики обладают следующими свойствами: , , , , которые непосредственно следуют из (2.14)–(2.16). Другими словами: характеристики , являются четными, , – нечетными. В силу этого графики при изменении частоты oт –∞ до 0 не строятся. АФЧХ представляет собой годограф на комплексной плоскости с координатами u, v или А, при изменении от 0 до .

На рис. 2.4 и 2.5 представлены иллюстративные графики частотных характеристик некоторого звена.

 

Рис. 2.4

 

Штриховой линией показаны части графиков, соответствующие . Вполне понятно, что из графика (см. рис. 2.4) нетрудно получить графики а, б или соответственно в, г (см. рис. 2.5) и наоборот.

Рис. 2.5

 

На практике часто применяются соответствующие логарифмические частотные характеристики: логаpифмичeская амплитудная частотная характеристика (ЛАЧХ) и логарифмическая фазовая частотная xаpактepистика (ЛФЧХ) , графики которых строятся в логарифмическом масштабе. При построении по оси ординат откладывается величина , единицей измерения которой является децибел, а по оси абсцисс –
частота [1/с] в логарифмическом масштабе, т.е. величина . Увеличение в 10 раз соответствует приращению вдоль оси ординат на 20 дБ. При построении ЛФЧХ величину откладывают по оси ординат в обычном масштабе (в градусах или радианах), a – в логарифмическом масштабе.

На рис. 2.6 приведены иллюстративные графики ЛАЧХ и ЛФЧХ для некоторого звена. Частота , при которой ,носит название частоты среза. Левее значения (усиление), правее – (ослабление амплитуды гармонического сигнала).

Рис. 2.6




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.