Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стабилизация температуры




Стабилизация температуры моделируемой системы в принципе может быть необходима по двум причинам:

· образование дефектов кристаллической решётки, суперионный переход и плавление требуют энергии, так что в изолированной системе происходит повышение потенциальной энергии за счёт понижения температуры; поэтому, для моделирования кристаллов с постоянной температурой необходим алгоритм стабилизации температуры, моделирующий взаимодействие с термостатом;

· опыт показывает, что накопление вычислительной погрешности приводит к медленному, но существенному при больших временах моделирования разогреву кристаллитов; для предотвращения разогрева тоже необходима стабилизация температуры.

Идея стабилизации состоит в том, что в уравнения движения изолированной системы добавляется дополнительное слагаемое, понижающее скорости частиц в случае, если температура системы превосходит заданную и увеличивающее скорости в противоположном случае.

Модификация скоростей производится умножением импульсов на коэффициент p x/ Q, одинаковый для всех частиц, так что она не приводит к возникновению движения или вращения системы как целого.

Применение стабилизирующей температуру поправки в форме - было предложено Рябовым. Из его работ следует, что в форме - уравнения движения системы соответствуют гамильтониану, совпадающему с выражением для энтальпии H, так что они физически корректно описывают кристаллиты при нулевом (пренебрежимо малом) внешнем давлении и постоянной температуре.

Таким образом, для термостатирования системы с нулевыми граничными условиями можно использовать следующие уравнения движения молекул:

;

;

.

Здесь N – количество частиц в системе; T – требуемая температура; p x - дополнительная переменная размерности Дж×с, связанная с термостатом, Q – величина размерности Дж×с2, задающая частоту колебаний температуры; индекс x не имеет самостоятельного значения, он только показывает, что p x - переменная, относящаяся к стабилизации температуры.

В начале моделирования можно принять, что p x = 0. На последующих шагах моделирования эта величина изменяется по формуле

.

Значение константы Q в принципе произвольно, однако этим значением определяются период и амплитуда колебаний задаваемой температуры. Оценить необходимое значение Q можно из следующих соображений.

Из-за слагаемого, соответствующего термостату, к скоростям частиц добав­ляется поправка

.

Если домножить обе части уравнения на и просуммировать по всем i, то получится, что

,

где E – удвоенная кинетическая энергия системы. Её требуемое значение как раз и равно 3 NkT. Учтём то, что

и то, что, в соответствии с формулами и,

.

Таким образом, временная зависимость отклонения величины E от 3 NkT даётся уравнением

.

Можно переписать уравнение в приближённой форме, считая, что E» 3 NkT; это верно, если температура колеблется не сильно. Кроме того, вводим новую переменную

,

причём

.

Теперь, дифференцируя обе части уравнения по времени, в приближении E» 3 NkT получаем

.

Это – уравнение гармонических колебаний с циклической частотой

,

откуда

,

где t - период колебаний.

Выражение позволяет выбирать значение Q, исходя из требований, предъявляемых к периоду колебаний. Например так, чтобы период колебаний был существенно меньшим, чем время моделирования.




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 673; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.