Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

PC-совместимого ПК




Лекция 4. Архитектура системной платы современного

Системная (system board), или материнская (motherboard), плата персонального компьютера является основой системного блока, определяющей архитектуру и производительность компьютера.

Существуют системные платы с интегрированными видео-, аудио- и прочими устройствами, обеспечивающие полную функциональность компьютера без всяких карт расширения. При необходимости интегрированные устройства могут быть заменены устройствами, установленными в слоты расширения. Размещение на системной плате контроллеров, требующих интенсивного обмена данными (ATA, SCSI, графический адаптер), позволяет использовать преимущества локального подключения к шине памяти и процессора. Цель размещения других контроллеров на системной плате – сокращение общего числа плат компьютера.

Какая плата лучше – «голая» или с интегрированной периферией, – зависит от назначения компьютера. Интегрированные видео- и аудиоустройства, как правило, по своим параметрам являются не выдающимися, но вполне удовлетворяющими запросам многих пользователей.

Системные платы первых ПК, выполненных на процессорах 8088/86, помимо процессора содержали несколько периферийных БИС (контроллеры прерываний, прямого доступа к памяти, контроллер шины) и связующую логику на микросхемах малой и средней степени интеграции. Современные платы исполняются на основе чипсетов – наборов из нескольких БИС, реализующих все необходимые функции связи основных компонентов – процессора, памяти и шин расширения.

Чипсет определяет возможности применения различных типов процессоров, основной и кэш-памяти, а также ряд других характеристик системы, наиболее важных в плане ее функциональности и перспектив модернизации. Тип чипсета существенно влияет и на производительность – при одинаковых установленных компонентах (процессор, память, графический адаптер и жесткий диск) производительность компьютеров, собранных на разных системных платах (читай: чипсетах), может различаться на 30%.

Долгое время центральной шиной, вокруг которой компоновались все остальные элементы системной платы, являлась PCI. Ее центральное место не оспаривалось, поскольку шина PCI имела высокую производительность – 132 Мбайт/с. Традиционно на схемах шину PCI изображают посередине, как экватор. Процессор и память (вместе с кэш-памятью) изображают выше – «севернее», а шину ISA и все устройства, подключаемые к PCI и ISA, изображают ниже – «южнее экватора». Соответствующие части чипсета получили укоренившиеся названия северных (north) и южных (south).

Архитектура системной платы прошла путь от шинно-мостовой к хабовой, особняком держится архитектура HyperTransport. Независимо от архитектуры системной платы и физической реализации соединений все современные периферийные устройства (или контроллеры и адаптеры их интерфейсов) представляются логическими устройствами (точнее, функциями).

Традиционные (legacy) устройства (PIC 8259А, DMA 8237А, СОМ- и LPT-порты и другие аксессуары PC) в плане конфигурирования держатся особняком – их конфигурация является статической и не меняется на протяжении более двух десятков лет.

4.1. Шинно-мостовая архитектура

В шинно-мостовой архитектуре имеется центральная магистральная шина, к которой остальные компоненты подключаются через мосты. В роли центральной магистрали сначала выступала шина (E)ISA, затем ее сменила шина PCI. Шинно-мостовая архитектура чипсетов просуществовала долгое время и пережила много поколений процессоров (от 2-го до 7-го). Перемещение вторичного кэша с системной платы на процессор (Р6 и Pentium 4 у Intel и К7 у AMD) несколько упростило северную часть чипсета – в ней не надо управлять статической кэш-памятью, а остается лишь обеспечивать когерентность процессорного кэша с основной памятью, доступ к которой возможен и со стороны шины PCI.

Видеокартам с ЗD-акселератором пропускной способности шины PCI, разделяемой между всеми устройствами, оказалось недостаточно. Тогда и появился порт AGP как выделенный мощный интерфейс между графическим акселератором и памятью (а также процессором). При этом задачи северного моста усложнились: контроллеру памяти приходится работать уже на три фронта – ему посылают запросы процессор(ы), мастера шины PCI (и ISA, но тоже через PCI) и порт AGP. Пропускная способность AGP в режиме 2х/4х/8х составляет 533/1066/2133 Мбайт/с, так что шина PCI по производительности стала уже второстепенной. Однако в шинно-мостовой архитектуре она сохраняет свою роль магистрали подключения всех периферийных устройств (кроме графических).

В качестве мощного представителя шинно-мостовой архитектуры можно рассматривать чипсет AMD-760 (рис.4.1). Здесь имеются первичная шина PCI на 64 бит и 66 МГц, являющаяся «экватором», и вторичная шина для подключения рядовой периферии.

Рис.4.1. Пример шинно-мостовой архитектуры PC

Шина, к которой подключается множество устройств, является узким местом по ряду причин. Во-первых, из-за большого числа устройств, подключенных (электрически) к шине, не удается поднять тактовую частоту до уровня, достижимого в двухточечных соединениях. Во-вторых, шина, к которой подключается множество разнотипных устройств (особенно расположенных на картах расширения), обременена грузом обратной совместимости со старыми периферийными устройствами. Например, предусмотренные возможности повышения производительности PCI используются не всегда: расширение разрядности до 64 бит обходится слишком дорого (большое число проводников порождает свои проблемы), а повышение частоты до 66 МГц для шины возможно лишь если все ее абоненты поддерживают эту частоту. Достаточно установить одну «простую» карту PCI, и производительность центральной шины падает до начальных 133 Мбайт/с. То же можно сказать и про PCI-X: достаточно подключить к ней одно устаревшее устройство PCI, и все протокольные усовершенствования будут отменены.

4.2. Хабовая архитектура

С введением высокоскоростных режимов UltraDMA (ATA/66, АТА/100, а затем и ATА/133) связь двухканального контроллера IDE с памятью через шину PCI стала уже слишком сильно нагружать эту шину. Кроме того, появились высокоскоростные интерфейсы Gigabit Ethernet, FireWire (100/200/400/800 Мбит/с) и USB 2.0 (480 Мбит/с). Ответом на эти изменения в расстановке сил стал переход на хабовую архитектуру чипсета. В данном контексте хабы – это специализированные микросхемы, обеспечивающие передачу данных между своими внешними интерфейсами. Этими интерфейсами являются «прикладные» интерфейсы подключения процессоров, модулей памяти, шин расширения и периферийные интерфейсы (ATA, SATA, USB, FireWire, Ethernet). Поскольку к одной микросхеме все эти интерфейсы не подключить (слишком сложна структура и много требуется выводов), чипсет строится, как правило, из пары основных хабов (северного и южного), связанных между собой высокопроизводительным каналом.

Рис.4.2. Пример хабовой архитектуры PC

Северный хаб чипсета выполняет те же функции, что и северный мост шин-но-мостовой архитектуры: он связывает шины процессора, памяти и порта AGP. Однако на южной стороне этого хаба находится уже не шина PCI, а высокопроизводительный интерфейс связи с южным хабом (рис.4.2). Пропускная способность этого интерфейса составляет 266 Мбайт/с и выше, в зависимости от чипсета. Если чипсет имеет интегрированную графику, то в северный хаб входит и графический контроллер со всеми своими интерфейсами (аналоговыми и цифровыми интерфейсами дисплея, шиной локальной памяти). Чипсеты с интегрированным графическим контроллером могут иметь внешний порт AGP, который становится доступным при отключении встроенного графического контроллера. Есть чипсеты, у которых порт AGP является чисто внутренним средством соединения встроенного контроллера, и внешний графический контроллер к ним может подключаться только по шине PCI.

С появлением PCI-E архитектура не слишком изменилась: северный хаб (мост) вместо порта AGP теперь предлагает высокопроизводительный (8х или 16х) порт, а то и пару портов PCI-E для подключения графического адаптера. Маломощные (1х) порты PCI-E могут предоставляться как северным, так и южным хабами (это решает разработчик чипсета). В последнем случае корневой комплекс PCI-E «расползается» по двум микросхемам чипсета, связанным между собой «фирменным» интерфейсом. Использования PCI-E как единой коммуникационной базы внутри чипсета пока не наблюдается.

4.3. Архитектура HyperTransport

Технология (архитектура) HyperTransport (НТ) задумывалась как альтернатива шинно-мостовой архитектуре системных плат. Технология разработана компаниями AMD, Apple Computers, Broadcom, Cisco Systems, NVIDIA, PMC-Sierra, SGI, SiPackets, Sun Microsystems, Transmeta. Первый релиз вышел в 2001 году, в 2003-м – версия 1.10. Прежнее кодовое название – LDT (Lighting Data Transport).

Основная идея НТ – замена шинного соединения компонентов (периферийных устройств) системой двухточечных встречно направленных соединений. При этом достижима более высокая тактовая частота интерфейсов, что обеспечивает их более высокую (по сравнению с шиной) пропускную способность. Структурная схема компьютера архитектуры НТ приведена на рис.4.3. Главный мост (host bridge) обеспечивает связь НТ с ядром – процессором и памятью. Периферийные контроллеры, требующие высокой пропускной способности, реализуются в виде НТ-туннелей. В архитектуре предусматривается и мостовая связь с шиной PCI.

Архитектура НТ обеспечивает все типы транзакций процессоров и устройств PCI, PCI-X и AGP, используемые в PC. Транзакции выполняются в виде серий передач пакетов различных типов. В традиционных транзакциях целевое устройство идентифицируется адресом: чтение и запись в пространстве памяти, ввод-вывод в конфигурационном пространстве, а также считывание вектора прерывания из PIC 8259А и специальные циклы PCI.

Архитектура НТ основана на двусторонней пакетной передаче данных между парой устройств. Устройство НТ может выступать в роли инициатора или/и целевого устройства транзакций. По топологическим свойствам различают несколько типов устройств НТ:

· Туннель (tunnel) – устройство с двумя интерфейсами НТ; такие устройства могут собираться в цепочку, образующую логическую шину. Цепочка подключается к хосту (процессору с главным мостом), отвечающему за конфигурирование всех устройств и управляющему работой НТ.

· Мост (bridge) – устройство, соединяющее одну логически первичную шину (подключенную к хосту) с одной или несколькими логически вторичными шинами (цепочками).

· Коммутатор (switch) – устройство с несколькими интерефейсами НТ, по структуре аналогичное нескольким мостам PCI, подключенным к одной (внутренней) шине.

· Тупик, или пещера (cave) – устройство с одним интерфейсом НТ.

Рис.4.3. Пример архитектуры HyperTransport

Хост (host) – это «хозяин шины», подключающийся к ней через главный мост и выполняющий функции конфигурирования (аналогично и совместимо с PCI). Основной вариант топологии – цепочка устройств-туннелей, подключенная верхним концом к хосту. Каждый интерфейс НТ состоит из двух независимых частей: передатчика и приемника. Каждому устройству при конфигурировании выделяются свои области в адресном пространстве. В цепочке устройства-туннели транслируют пакеты сверху вниз (нисходящий трафик) и снизу вверх (восходящий). Если в нисходящем управляющем пакете устройство обнаруживает свой адрес, оно «понимает», что обращаются к нему, и принимает соответствующую информацию (управляющие пакеты и данные).

По замыслу разработчиков, НТ должна стать архитектурой построения PC, однако пока что используется лишь технология НТ. В вышеприведенном примере главный мост реализует интерфейс AGP. В 64-битных процессорах AMD, в которых применяется НТ, главный мост размещается в самом процессоре. При этом у процессора оказывается два интерфейса: интерфейс памяти (пока что DDR SDRAM) и НТ в качестве системной шины. В распространенных чипсетах (от VIA, SiS) к интерфейсу НТ подключается только северный хаб, обеспечивающий лишь интерфейс подключения графического адаптера – AGP или PCI-E. Южный хаб соединяется с северным собственным интерфейсом, так что использования НТ как универсальной транспортной структуры для множества компонентов пока не наблюдается.

4.4. Чипсеты и системные платы

Хотя чипсеты в значительной степени определяют свойства системных плат, выполненных на их основе, у разработчика плат всегда остаются возможности упростить плату и «испортить хорошую вещь». Так что системные платы, выполненные на одном и том же чипсете, могут иметь разные характеристики по производительности и разный диапазон поддерживаемых устанавливаемых компонентов (процессоров, памяти, интерфейса). И конечно же, существенную роль в реализации всех полезных свойств чипсета играют BIOS и применяемые версии системных драйверов. Чипсеты ориентируются на разные применения системных плат, и функции, необходимые для сервера, могут оказаться лишними для офисного компьютера, а за излишества всегда приходится платить. Поэтому нельзя чипсеты выстроить по порядку от худшего к лучшему, они позиционируются в многомерном пространстве противоречивых требований.

Сравнивать интегрированные чипсеты нужно не только по общим параметрам, но и по характеристикам графики, звука, адаптера локальной сети. Основные параметры распространенных системных плат (и чипсетов) приведены в литературе. Результаты тестирования и сравнения системных плат регулярно публикуются в периодических изданиях и в Сети, например на сайте iXBT.com.

Микросхемы чипсета при инициализации во время теста POST программируются по многим параметрам, часть из которых (константы) хранится в BIOS, а часть – в энергонезависимой памяти конфигурации, включающей ячейки CMOS и ESCD системы РпР. Таким образом, имеются программные способы как оптимальной настройки, так и вывода платы из строя записью определенных значений в энергонезависимую память. Эту запись производит утилита CMOS Setup, а также такие «экспансивные» операционные системы, как Windows.

Контрольные вопросы

1. Какие компоненты содержит системная плата PC-совместимого компьютера?

2. Достоинства и недостатки интегрированных в системную плату устройств.

3. Особенности шинно-мостовой архитектуры системной платы.

4. Особенности хабовой архитектуры системной платы.

5. Особенности архитектуры HyperTransport.





Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 507; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.