Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Розв’язання тригонометричних рівнянь




Розв’язання найпростіших тригонометричних рівнянь

Рівняння називаються тригонометричними, якщо невідома величина знаходиться під знаком тригонометричних функцій. Найпростішими тригонометричними рівняннями називаються рівняння , , , . Розв’язати найпростіше тригонометричне рівняння – означає знайти множину всіх кутів, що мають дане значення тригонометричної функції.

Розглянемо розв’язання найпростіших тригонометричних рівнянь:

55. Розв’яжіть рівняння:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ; 8) ;

9) ; 10) ;

11) ; 12) .

56. Розв’яжіть рівняння:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ; 8) ;

9) ; 10) ;

11) ; 12) ;

57. Розв’яжіть рівняння:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ; 8) ;

9) ; 10) ;

11) ; 12) ;

13) ; 14) ;

15) ; 16) ;

17) ; 18) ;

19) ; 20) .

58. Розв’яжіть рівняння:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ; 8) ;

9) ; 10) ;

11) ; 12) ;

13) ; 14)

 

 

до змісту

Якщо тригонометричне рівняння не є найпростішим, то за допомогою тотожних перетворень його треба звести до одного або кількох найпростіших, розв’язання яких визначається стандартними формулами.

Деякі тригонометричні рівняння шляхом тотожних перетворень можна привести до рівняння з однією тригонометричною функцією, потім зробити заміну і привести рівняння до квадратного.

Приклад 1. Розв’язати рівняння .

Розв’язання

Нехай , тоді .

Звідси , .

Оскільки , то , .

Оскільки , то , .

Відповідь: ; ; .

Приклад 2. Розв’язати рівняння .

Розв’язання

Замінивши на , матимемо:

Нехай , тоді .

Звідси , .

Оскільки , то рівняння розв’язків немає.

Оскільки , то ,

Отже

Відповідь:

Приклад 3. Розв’язати рівняння ,

Розв’язання

, .

Нехай , тоді , , .

Маємо: 1) , .

2) , .

Відповідь: .

59. Розв’яжіть рівняння:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) ,

9) , 10) ,

11) , 12) .

13) , 14) ,

15) , 16) .

Багато тригонометричних рівнянь, права частина яких дорівнює 0, розв’язуються розкладанням їхньої лівої частини на множники.

Приклад 1. Розв’язати рівняння .

Розв’язання

Врахувавши, що , матимемо:

Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. Тому:

1) .

2) .

Відповідь: .

Приклад 2. Розв’язати рівняння .

Розв’язання

;

.

1) .

2) .

Відповідь: .

60. Розв’яжіть рівняння:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) ,

9) , 10) ,

11) , 12) ,

13) , 14) ,

15) , 16) .

Рівняння виду , де і не дорівнюють нулю, називається однорідним рівнянням 1-го степеня.

Значення , при яких дорівнює нулю, не задовольняє даному рівнянню, бо тоді і теж дорівнював би нулю. Тому можна розділити обидві частини рівняння на . Маємо:

Рівняння виду: називається однорідним рівнянням 2-го степеня.

Якщо числа не дорівнюють нулю, то розділимо дане рівняння на (або на ). У даному рівнянні , бо в супротивному випадку теж дорівнював би нулю. Тоді

61. Розв’яжіть рівняння:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8)

9) , 10) ,

11) , 12) ,

13) , 14) .

62. Розв’яжіть рівняння

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ; 8) .

до змісту

§ 11 Розв’язання тригонометричних нерівностей

Тригонометричними нерівностями називаються нерівності, у яких змінна знаходиться під знаком тригонометричної функції.

Рис. 6

Таблиця 3

 
Розв’язків немає
Розв’язків немає

Рис. 7

 

Таблиця 4

 
Розв’язків немає
Розв’язків немає

Таблиця 5

63. Розв’яжіть нерівність:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) ,

9) , 10) ,

11) , 12) ,

13) , 14) ,

15) , 16) .

64. Розв’яжіть нерівність:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) ,

9) , 10) ,

11) , 12) .

65. Розв’яжіть нерівність:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) .

66. Розв’яжіть нерівність:

1) , 2) ,

3) , 4) ,

5) , 6) ,

7) , 8) .

 

 

до змісту




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 822; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.079 сек.