Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Компьютерные технологии будущего




 

Существует несколько возможных альтернатив замены современных компьютеров, одна из которых - создание так называемых оптических компьютеров, носителем информации в которых будет световой поток[18].

Весь набор полностью оптических логических устройств для синтеза более сложных блоков оптических компьютеров реализуется на основе пассивных нелинейных резонаторов-интерферометров. В зависимости от начальных условий (начального положения пика пропускания и начальной интенсивности оптического излучения) в пассивном нелинейном резонаторе, нелинейный процесс завершается установлением одного из двух устойчивых состояний пропускания падающего излучения. А из нескольких нелинейных резонаторов можно собрать любой, более сложный логический элемент (триггер).

Элементы памяти оптического компьютера представляют собой полупроводниковые нелинейные оптические интерферометры, в основном, созданными из арсенида галлия (GaAs). Минимальный размер оптического элемента памяти определяется минимально необходимым числом атомов, для которого устойчиво наблюдается оптическая бистабильность. Это число составляет ~1000 атомов, что соответствует 1-10 нанометрам[19].

К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров – оптические процессоры, ячейки памяти), однако до полной сборки еще далеко. Основной проблемой, стоящей перед учеными, является синхронизация работы отдельных элементов оптического компьютера в единой системе, поскольку уже существующие элементы характеризуются различными параметрами рабочей волны светового излучения (интенсивность, длина волны), и уменьшение его размера. Если для конструирования оптического компьютера использовать уже разработанные компоненты, то обычный PC имел бы размеры легкового автомобиля. Однако применение оптического излучения в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами, а именно:

- световые потоки, в отличие от электрических, могут пересекаться друг с другом;

- световые потоки могут быть локализованы в поперечном направлении до нанометровых размеров и передаваться по свободному пространству;

- скорость распространения светового сигнала выше скорости электрического;

- взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связи и создании параллельных архитектур[20].

Вообще, создание большего количества параллельных архитектур, по сравнению с полупроводниковыми компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации, свойственные современным ЭВМ. Развитие оптических технологий все равно будет продолжаться, поскольку полученные результаты важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Internet.

Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из них являются квантовые компьютеры, нейрокомпьютеры и оптические компьютеры, поскольку современная элементная и технологическая база имеет все необходимое для их создания.

Итак, что же такое квантовый компьютер? Основной его строительной единицей является кубит (qubit, Quantum Bit). Классический бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Для описания состояния квантовой системы было введено понятие волновой функции, ее значение представляется в виде вектора с большим числом значений. Существуют волновые функции, которые называются собственными для какой-либо определенной величины. Квантовая система может находиться в состоянии с волновой функцией, равной линейной комбинации собственных функций, соответствующих каждому из возможных значений (такое состояние называется сложным), т. е. физически - ни в возбужденном, ни в основном состоянии. Это означает, что кубит в одну единицу времени равен и 0, и 1, тогда как классический бит в ту же единицу времени равен либо 0, либо 1. Как для классических, так и для квантовых компьютеров были введены элементарные логические операции: дизъюнкция, конъюнкция и квантовое отрицание, при помощи которых будет организована вся логика квантового компьютера[21].

Согласно законам квантовой механики, энергия электрона, связанного в атоме, не произвольна. Она может иметь лишь определенный прерывный (дискретный) ряд значений Е0, Е1,... Еn называемых уровнями энергии. Этот набор называют энергетическим спектром атома. Самый нижний уровень энергии Е0, при котором энергия атома наименьшая, называется основным. Остальные уровни (Е1, Е2,... Еn) соответствуют более высокой энергии атома и называются возбужденными. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями - квантами, или фотонами. При поглощении фотона энергия увеличивается - он переходит "вверх" - с нижнего на верхний уровень, при излучении фотона атом совершает обратный переход вниз[22].

Для того чтобы практически реализовать квантовый компьютер, существуют несколько важных правил, которые в 1996 г. привел Дивиченцо (D.P. Divincenzo). Без их выполнения не может быть построена ни одна квантовая система:

1. Возможность приведения системы в точно известное начальное состояние.

2. Высокая степень изоляции от внешней среды.

3. Умение менять состояние системы согласно заданной последовательности элементарных преобразований[23].

Выполнение этих требований вполне реально с помощью существующих квантовых технологий, однако для того, чтобы воплотить теорию в реальность, нужны гигантские суммы денежных средств, которые пока не могут быть выделены на финансирование исследований.

В России будет создан Международный центр квантовой оптики и квантовых технологий. Это - один из проектов, которые поддерживает отечественный фонд "Сколково". Недавно несколько знаменитых ученых-физиков встретились с представителями фонда и российских властей для того, что бы обсудить условия функционирования данного центра.

21 января 2010 года всемирно известные ученые-физики Вольфганг Кеттерле, Джон Дойл, Томмасо Каларко, Михаил Лукин и Евгений Демлер встретились с главой кремлевской администрации, членом попечительского совета фонда "Сколково" Владиславом Сурковым и президентом этого фонда Виктором Вексельбергом. Ученые обсудили с ними необходимые условия функционирования Международного центра квантовой оптики и квантовых технологий.

Данная команда представляет проект Международного квантового центра, ведет прорывные научные разработки, способные в будущем привести к коренным изменениям на мировом рынке инновационных технологий. Предполагается, что центр будет заниматься фундаментально новыми направлениями, использующими полный контроль над сложными квантовыми системами.

Также, одно из предполагаемых направлений центра квантовая информатика - новое направление науки и технологии, изучающие системы по измерению, переработке и передачи информации используя квантовые системы. В течение пять-десять лет на базе центра может быть предложено решение по созданию абсолютно безопасных и недоступных для взлома сетей передачи данных (вплоть до нескольких сотен километров), представлены субмикронные оптические транзисторы и высокочастотная оптическая электроника, существенно превосходящая уровень современной электроники. В результате работы квантового центра возможна реализация новых систем для сверхчувствительной томографии головного мозга, разработка компактных и точных часов для систем навигации[24].

По словам Евгения Демлера, за последние 50 лет компоненты компьютеров уменьшались вдвое каждые полтора года. Но с уменьшением размера компьютерных компонентов они все больше приближаются к атомным размерам. И тогда квантовая механика накладывает фундаментальный предел, за которым развивать традиционные технологии уже невозможно. "Нам, ученым, необходимо активно использовать квантовую механику, чтобы изменить сами квантовые свойства физического мира. Наша цель - создать приборы и устройства, использующие законы квантовой механики на принципиально новом уровне. Квантовые компьютеры смогут решать фундаментальные открытые проблемы в физике и других науках. Например, квантовые компьютеры можно использовать для решения задачи высокотемпературной сверхпроводимости",- говорит профессор Демлер [25].

Обычные компьютеры считают в двоичной системе счисления и оперируют только нулями и единицами, которые называются битами. Но квантовые компьютеры гораздо мощнее. Они могут оперировать кубитами, или квантовыми битами, которые могут принимать и промежуточные между 0 и 1 значения. А это повышает скорость и качество обработки информации на несколько порядков.

Правда, пока еще квантовые компьютеры не вышли из "младенческого возраста". Максимум, что удалось пока посчитать этой вычислительной машинке, - пример вроде того, что 3×5 = 15. Едва ли можно считать это серьезной заявкой на вытеснение сегодняшних суперкомпьютеров. Кроме того, У них есть еще один серьезный недостаток: необходимость поддерживать когерентность (то есть согласованное движение и совпадение испускаемых волн) большого количества атомов. Решение этой проблемы привело бы к громадному рывку вперед в области квантовой информатики.

Тем не менее, многие ученые уверены, что решение данной проблемы уже не за горами. И тогда квантовые компьютеры, возможно, полностью заменят на наших столах привычные цифровые. Более того, однажды может оказаться, что от этих компьютеров зависит будущее мировой экономики, поэтому данные технологии представляют громадный коммерческий интерес. И если впервые подобные ЭВМ будут созданы именно в нашей стране - от этого выиграет не только отечественная наука, но и каждый россиянин.

Можно предположить, что объединение квантовых и оптических компьютеров даст миру самую мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (за счет параллелизма) и возможность эффективной обработки и управления сенсорной информацией. Но это лишь предположение, которое никакими фактическими доказательствами в настоящее время не подкреплено. Но технология создания вычислительных систем не стоит на месте, и в ближайшем будущем на рынке возможно появление новых вычислительных систем.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1548; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.